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A B S T R A C T

Thermal energy storage (TES) for a cooling plant is a crucial resource for load flexibility. Traditionally, simple,
heuristic control approaches, such as the storage priority control which charges TES during the nighttime and
discharges during the daytime, have been widely used in practice, and shown reasonable performance in the
past benefiting both the grid and the end-users such as buildings and district energy systems. However, the
increasing penetration of renewables changes the situation, exposing the grid to a growing duck curve, which
encourages the consumption of more energy in the daytime, and volatile renewable generation which requires
dynamic planning. The growing pressure of diminishing greenhouse gas emissions also increases the complexity
of cooling TES plant operations as different control strategies may apply to optimize operations for energy cost
or carbon emissions. This paper presents a model predictive control (MPC), site demonstration and evaluation
results of optimal operation of a chiller plant, TES and behind-meter photovoltaics for a campus-level district
cooling system. The MPC was formulated as a mixed-integer linear program for better numerical and control
properties. Compared with baseline rule-based controls, the MPC results show reductions of the excess PV
power by around 25%, of the greenhouse gas emission by 10%, and of peak electricity demand by 10%.
1. Introduction

Energy storage technologies, including water-based thermal energy
storage (TES), electrochemical, batteries, pumped storage hydropower,
flywheels, and compressed air, provide operational flexibility, load
balancing, renewable energy integration and frequency regulation. Of
these technologies, the water-based, or chilled water tank, TES is
one of the oldest (cool storage was first used commercially in the
1940s, Mitchell and Braun [1]). TES systems can decouple the HVAC
energy use from the building’s thermal loads and offer many benefits,
including energy cost savings, ancillary services benefit, reduction in
equipment size and the corresponding capital cost savings (especially
when designed as partial storage systems), potentially higher energy
efficiency, improved HVAC operation, and resiliency [2, Chapter 51.
Thermal Storage]. Many facilities that rely on district energy systems
(e.g. large-sized commercial buildings, university campuses and gov-
ernment institutions) already adopted this technology in the era of
fossil fuel power plants and provide a key resource for achieving State
and Government-mandated clean energy and carbon neutrality goals.

∗ Corresponding author.
E-mail address: donghunkim@lbl.gov (D. Kim).

Traditional control strategies for TES cooling plants, i.e., the storage
priority or chiller priority controls, fully charge TES using chillers
during OFF peak price periods (typically a night time period) while
discharging TES to meet cooling load partially or fully during ON peak
price periods (typically a day time period). Although the rule-based
controls have shown near-optimal behavior and provided benefits to
facilities, buildings, and the grid in the past by lowering the total
electrical load during peak price periods and hence requiring less
spinning/non-spinning reserves and other back-up power plants in the
grid, the rapid penetration of renewable energy resources is chang-
ing the situation. The intermittent nature of behind-meter renewable
energy sources and the grid’s movement toward more dynamic price
signals challenge building or facility operators to rely on the rule-
based operations. To understand impacts on the grid, refer to the
CAISO (California Independent System Operator) duck curve depicted
in Fig. 1. The graph shows the change of net load profile for a spring
day (March 31) as more renewables are being installed. The belly of a
duck appears during the mid-afternoon, and the neck of a duck follows
during the evening. The belly gets deeper and might touch the baseline
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Acronyms

ABC Active chilled beams
ASHP Air source heat pump
CAISO California independent system operator
CHP Combined heat and power
EMS Energy management system
GDP Generalized disjunctive programming
GHG Greenhouse gas
GSHP Ground source heat pump
HVAC Heating, ventilating, and air conditioning
ISO Independent system operator
LEED Leadership in energy and environmental

design
MILP Mixed integer linear programming
MOER Marginal operating emission rate
MPC Model predictive control
NOAA National oceanic and atmospheric adminis-

tration
nZEB Net zero energy building
PV Photovoltaic
RTU Rooftop units
SOAP Simple object access protocol
SOC State of charge
TABS Thermally activated building structures
TRL Technology readiness level
TES Thermal energy storage

ig. 1. The official duck chart first published by CAISO in 2013 (What the Duck Curve
ells us about Managing a Green Grid).

ower supply from, e.g., the nuclear power plants. It is essential to
urtail renewable energy to maintain the base load generators. Fig. 2
hows the monthly wind and solar curtailment for the CAISO from
019 to 2021 (different colors represent different years). A significant
ortion of renewable energy generation is currently wasted, and the
enewable energy is expected to be curtailed more as more renewable
esources are being installed in CAISO territory. The other issue occurs
n the neck of a duck: Because of the rapid drop of solar energy, the
et load increases quickly. To meet the high ramping rate of the load,
ispatchable generators with short response time (order of minutes)
uch as gas turbine generators have to run and emit significant CO2
an order of thousands of metric ton CO2 equivalent per hour) during
he neck period.

A large number of papers are available in the literature that present
dvanced control approaches, including model predictive control
2

Fig. 2. Wind and solar curtailment totals by month in California ISO. The image is
from CASIO (http://www.caiso.com/).

(MPC), for optimal operation of building and district energy systems
with the behind-meter renewable generation or/and active energy
storage (TES or battery) for renewable energy integration. Reviewed
papers are summarized in Table 1, where ASHP stands for air source
heat pump, GSHP for ground source heat pump, PV for Photovoltaic,
TABS for thermally activated building structures, nZEB for net zero
energy building, RTU for Roof Top Unit, ACB for Active Chilled Beams,
CHP for combined heat and power, TES for thermal energy storage.
Advanced controls, especially MPC, can help to manage energy storage
and renewable generation. Kircher and Zhang [3] applied MPC to co-
optimize the operation of a chiller plant and ice storage in an office
building in New York, reducing the peak demand by 25%. Oldewurtel
et al. [4] developed a Sequential Linear Programming based MPC for
Residential and office buildings in Zurich, which reduced the peak de-
mand by 3.5% (without battery) and by 17.5% (with battery). Ceusters
et al. [5] developed a Mixed-integer Linear Programming based MPC
to optimize the operation of a campus-level multi-energy system,
including CHP, renewable generation (wind, PV), and battery. Zhang
et al. [6] proposed to use Mixed-integer Linear Programming based
MPC to operate a residential micro-grid, saving 40% costs compared
with conventional rule-based strategy. In addition to MPC, LeBreux
et al. [7] presented a fuzzy logic and feedforward controller to resolve
the supply and demand mismatch and to minimize the grid dependency
using thermal storage for a nZEB. Li et al. [8] proposed reinforcement
learning and MPC to mitigate the intermittency of behind-meter renew-
able generation by optimizing the charging/discharging of a battery
based on wind power generation prediction. It was found that MPC can
help to smooth wind power scheduling and lower wind curtailment. To
cover the wind intermittency, MPC demands 25% less battery capacity
compared with a heuristic control algorithm.

Despite many studies of optimal operation of TES with behind-
meter renewable and energy storage, a majority of them are using
simulations as shown in the table, and therefore real performance of
MPC including self-consumption ratio are not clear. Although there
are some papers with experimental assessment of MPCs coordinat-
ing TES and HVAC systems, they are limited to small-scale systems,
e.g., laboratory or small-sized building (e.g., residential) levels. For
large-scale systems, there are very few papers that demonstrate an MPC
for renewable energy integration and present real site performance. In
addition, there is a lack of knowledge about applying MPC to mitigate
CO2 emissions [17].

This paper fills the gaps by implementing an MPC for a campus-
level cooling TES plant and presenting on-site performance compared
with carefully selected, historical rule-based operation data for the
plant. The MPC aims at promoting the self-consumption of the on-
site renewable and minimizing CO2 in the grid. Because utility cost
reduction is one of the key motivations for the facility, the MPC

http://www.caiso.com/
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Table 1
Summary of studies on applying advanced control to optimize the operation of energy storage, renewable and HVAC in buildings.

Study Building System Goal Control variable Control approach Experiment Results

LeBreux et al. [7] Building in
Canada

TABS, direct
solar
radiation

Load shifting On/off of
electrical heating

Controller is based on
fuzzy logic and
feedforward controller

Simulation for
the winter
season,
not-optimized

95% of heating electricity is
consumed during off-peak
hours

Reynders et al. [9] Residential in
Belgium

TABS, ASHP
with PV

Minimize the
grid
dependency of
nZEB

Temperature
setpoint

Temperature setpoint is
determined by predicted
heat loss and peak hour,
not-optimized

Simulation in
Modelica

Peak use is reduced by 89.2%
for the 4 ◦C comfort band, or
67.3% for the 2 ◦C comfort
band

Kircher and Zhang
[3]

Office
building in
New York

HVAC with
ice tank, no
renewable

Minimize
energy bill

Operation of
chiller and ice
tank

MPC policy is computed
implicitly at each stage
through online convex
optimization

Monte Carlo
Simulation under
different weather
and utility price
structure

25% peak reduction and 50%
demand charge saving

Oldewurtel et al.
[4]

Residential
and office in
Zurich

HVAC with
battery, no
renewable

Minimize
energy bill

Building
pre-cooling and
battery charg-
ing/discharging

MPC using state space
model for building thermal
dynamics, optimization
problem formed as
Sequential Linear
Programming

Simulation 3.5% peak reduction without
battery and 17.5% with large
battery

Hajiah and Krarti
[10] and Hajiah and
Krarti [11]

Commercial
building in
Boulder, CO

HVAC with
ice storage
(665 kWh)

Minimize
energy bill

Building
pre-cooling and
ice storage charg-
ing/discharging

The optimization problem
is solved using direct
search complex method

Simulation Combined use of building
thermal mass and ice storage
system can save up to 40%
total energy costs

Ahmad et al. [12] Not
mentioned

ASHP, solar
heating,
storage tank

Minimize
energy bill and
comfort
violations

ASHP On/Off MPC formed as a linear
programming and
quadratic programming

Simulation No quantified results are
provided

Ceusters et al. [5] Campus with
multi-energy
system

CHP, wind,
PV, and
battery

Minimize
operational
costs

Operation of CHP
and battery

MPC is formulated as
mixed-integer linear
program solved by CPLEX

Simulation RL can achieve adequately
optimal performance for
multi-energy management
systems as MPC

Li et al. [8] Wind farm
with battery

Maximize the
total revenue
of the wind
farm

Charge/discharge
of battery

MPC with four hours wind
prediction

Simulation To cover the wind
intermittency, MPC demands
25% less battery capacity
compared with heuristic
algorithm

Zhang et al. [6] Residential
microgrid

Wind, PV,
CHP, battery,
TES, EV,
HVAC

Minimize
operation costs

Scheduling of
equipment

MPC formulated as mixed
integer linear programming

Simulation MPC saves 40% costs
compared with traditional
day-ahead programming
strategy under perfect
forecasting condition

Zhao et al. [13] Zero Carbon
Building in
Hong Kong

CHP, PV, and
chilled water
storage

Minimize
operational
costs

Scheduling of CHP
and thermal
storage

MPC formed as nonlinear
programming

Simulation MPC helps to achieve up to
48% carbon emission
reduction, 22% energy saving,
and 29% cost saving

Lee et al. [14] Office
building in
Tokyo

Chiller with
TES

Minimize
operating cost

Charging
discharging of TES

MPC solved by 𝜖DE-RJ
[15]

Simulation in
EnergyPlus

MPC reduced the building
operating costs by 3.4%
compared to the RBC

Tarragona et al.
[16]

Detached
house in
Spain

ASHP, PV,
TES

Minimize
operating costs

Operation of HP MPC formed as mixed
integer non-linear
programming

Simulation with
heating load
from EnergyPlus

MPC saves 58% energy cost
compared to RBC
is also formulated to reduce peak demand. The technical details of
mathematical programming and modeling approaches are not focused
on in this paper and we refer to our companion paper for those
perspectives. However, in this paper, we present the complete MPC
formulation, focus on the site performance evaluation, provide barriers
and challenges for a large scale MPC deployment that were identified
during this demonstration work, and share lessons-learned to guide and
facilitate future development of MPCs for large central plants.

Section 2 describes components, overall configuration and the cor-
responding baseline control of the district cooling system. In Section 3,
the MPC formulation for better renewable energy integration and grid
decarbonization is presented, and the control infrastructure and soft-
ware to supplement and implement the MPC are also included. In
Section 4, a selection process of historical baseline data and perfor-
mance assessment results compared with the baseline data in terms of
3

self-consumption ratio, CO2 emission and peak demand are described.
Finally, Section 5 summarizes and shares the lessons-learned to guide
and facilitate future development of MPCs for central plants.

1.1. Innovations

(1) Bringing the MPC technology to real world applications and
(2) demonstrating the use of district energy TES plants for renewable
energy integration and grid decarbonization are innovations because
there are few previous similar studies and this work advances the
maturity of the MPC technology applied to district energy TES systems.
MPC applications for central cooling/heating TES plants have been
investigated since the early 1990’s [18]. An enormous number of papers
have been published and a variety of MPC approaches were introduced
accordingly, but the majority of them are still simulation-based studies,
despite the long history of MPC in building energy systems (as discussed
in the Introduction and in Table 1). The significant, associated problem

is that the lack of field demonstrations and unclear demonstrated
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Fig. 3. The equipment configuration and schematic diagram of the central cooling plant at University of California, Merced: the black dashed box indicates the physical boundary
of the cooling plant including EMS that manages device level controls. The primary water flow rate setpoint and plant mode marked in red are the variables to be determined by
the MPC in this study. Power flow directions at the campus grid connection point (the circle) are shown in the upper right corner: The sum of the imported power from the grid
and PV power generation should be the same as the sum of plant and non-plant power consumption.
savings at sites prevent industry from bringing MPC technologies to
market. This field study should fill this gap at least partially and
significantly advance the Technology Readiness Level (TRL) of MPC
technology applied to district energy systems from a low level (TRL
3: proof of concept) to a higher level (≥TRL 7: system prototype
demonstration in an operational environment).

2. Site description and baseline control strategy

2.1. Site description

The central plant of the University of California, Merced is the
demonstration site located in California, U.S. UC Merced has been on
the cutting edge of sustainability in higher education and has set strin-
gent sustainability goals. The campus is green from the ground up, with
every campus building LEED (Leadership in Energy and Environmental
Design) certified by the U.S. Green Building Council. In addition, the
central plant, built in 2005, was the first energy plant in the United
States to be certified LEED Gold.

The cooling TES plant, shown in Fig. 3, has five chillers with a total
cooling capacity of 17.6 MW, 5000 ton of refrigeration, serving around
40 buildings. It has the primary–secondary (decoupled) chilled water
loop configuration, where separate variable speed pumps are dedicated
to the primary and secondary water loops. The chillers in the primary
water loop, where each chiller has rated cooling capacity from around
1000 to 1500 ton, are high-efficiency units with centrifugal compres-
sors and internal capacity controls using variable speed compressor,
4

inlet guide vane and diffuser modulation and hot-gas bypass for part-
load operations. The chiller configuration is a combination of series
and parallel connections. Depending on the selection of plant mode,
the plant could operate a single chiller, two serially connected chillers,
three chillers (two series chillers and one parallel chiller), and four
chillers (two parallel chiller groups of chillers where each group has
two series chillers). The variable frequency drives for the secondary
water pumps adjust the pump speed to regulate the differential pressure
between the supply and return pipes to transport the chilled water to
multiple building load terminals. A tertiary pump ‘‘bridge’’ distributes
the chilled water within each building.

Nine cooling towers and five condenser water pumps shown in Fig. 3
deliver the heat from the condensers to the ambient air. The operation
of condenser water pumps is interlocked with the plant mode, i.e., the
energy management system (EMS) switches on/off some of them ac-
cording to the plant mode. The cooling tower fan speeds are modulated
to meet the condenser water temperature setpoint determined by the
EMS. We refer to Ashrae [2] Chapter 3. Central Cooling and Heating
Plants and Chapter 12. District Heating and Cooling for more detailed
descriptions of components and their functionalities, and Ashrae [19]
Chapter 43. Supervisory Control Strategies and Optimization for the
condenser water temperature setpoint control and cooling tower fan
sequencing.

A two million gallon chilled water tank (sensible energy storage)
is located at the bypass line (or decoupler) between the primary and
secondary water loops. The tank is a stratified cool storage where
warmer and less dense water floats on the top of colder and denser

http://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level
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water. The two layers are separated by the thermocline where the water
temperature changes abruptly, and water temperature is uniformly
distributed in each layer. When the tank is discharged, return water
from building terminals fills the tank from the top pushing the colder
water out of the tank. On the other hand, when the tank is charged,
the chilled water fills from the bottom of the tank pushing the warm
water out of the tank. There are no isolation valves on the bypass
line, and therefore the mismatch between primary water flow rate and
secondary flow rate determines the charging or discharging flow rate.
When the secondary flow rate is higher than the primary flow rate,
i.e., the deficit flow condition, the return water goes into the top of
the tank making discharge. The opposite causes charging. In order not
to disturb the thermocline in the water tank, the chilled water supply
temperature setpoint should be maintained at around 39 ◦F (around
4 ◦C). This constraint on the chiller leaving temperature together with
no-isolation valves on the bypass line results in the primary water flow
rate setpoint being the only decision variable that defines the charging
and discharging heat rates when chillers are running.

In addition, the UC-Merced campus has a solar farm of more than
4 MW which covers 8.5 acres southeast of the campus and an approx-
imately 960-space parking lot. The PV has a single-axis sun tracking
system, which captures up to 30% more sunlight than conventional
fixed-tilt systems by following the sun throughout the day.

It is important to mention the utility tariff structure which is one
of the key driving forces for MPC. Because of the scale of energy
consumption, the energy price rate is much more complex than a
typical TOU (time of use) structure. It purchases energy from selected
energy service providers within the energy wholesale market through
a negotiation process. This program makes (1) the time variation of
the energy price rate small, and (2) the demand charge is much more
dominant than the energy charge at the site.

2.2. Energy management system and control sequences

The primary water flow rate setpoint and plant mode are the
variables determined by the MPC in this study. As shown in Fig. 3,
those are transferred to the plant’s EMS which consists of a number of
device-level controls and manages operations of system components.
The local controller for the primary water pumps in the EMS, which
is a mixture of proportional–integral and ON/OFF controls, selects
the right pump(s) according to the plant mode and adjusts pump
speed(s) through the variable frequency drive(s) to meet the setpoint. In
addition, once the plant mode signal is received by the EMS, internal
logic of the EMS eventually triggers switches to turn on and off the
chillers that correspond to the plant mode (See Fig. 3 for chiller(s) for
each mode). It has to be mentioned that the EMS also has complex logic
(not shown in Fig. 3 due to the complexity) that decides operations
of isolation valves, cooling towers and condenser water pumps which
are interlocked with each other for each plant mode, and that adjusts
speeds of condenser pump and cooling tower fans.

2.3. Description of baseline control

The basic operation strategy for the cooling TES plant is the storage
priority control that runs chiller(s) during the nighttime to store cooling
energy in the chilled water tank and uses the cooling energy during
the day time to fully meet the daytime campus cooling load. Fig. 4
shows a representative plant electrical power profile of the chiller plant
operation. To generate this plot, the daily profiles of the total plant
electrical power consumption, which aggregates chiller compressor
powers, cooling tower fan powers, pump powers for the primary and
condenser water pumps, over the month of August were collected and
averaged. Note that the plant power is zero from 12:00 to 17:00 h. This
means the chilled water tank completely serves the campus load, which
clearly characterizes the control and system as the storage priority
control and full storage system. It is important to remember that the
storage priority control in general does not account for behind-meter,
5

on-site renewable energy.
Fig. 4. Daily-averaged plant power at the UC-Merced.

3. MPC design and interface to EMS

3.1. Strategy to consider grid’s carbon condition for a site-specific MPC

It is important to describe how to incorporate a grid’s GHG (green-
house gases) condition to a site-specific MPC. The grid system-wide
emission rate in a specific grid region depends on the total power
production rate from grid power generators, and other factors that
affect system operating conditions, such as weather. The marginal
operating emissions rate (MOER) is the partial derivative of system-
wide emission rate with respect to the total production rate [20]. It
means the change of the emission rate in the grid region with respect to
the last megawatt produced by dispatchable generators having the unit
of metricTon CO2-equivalent per MWh [mTonCO2e/MWh]. Intuitively,
this indicates how much carbon emission rate increases/decreases in a
grid region when one consumes one megawatt more/less. Therefore,
MOER allows for associating the power usage at a specific site with
the carbon emission rate in the grid region by simply multiplying the
on-site power consumption with the MOER signal.

In this paper, we used the MOER signal calculated by WattTime,
based on a proprietary model that extends the basic methodology used
by both Siler-Evans et al. [21] and Callaway et al. [20] but adapted for
real-time use. WattTime calculates these marginal operating emission
rates in real-time, every 5 min using a combination of grid data from
the respective ISO and 5 years of historical Continuous Emissions
Monitoring System data [22].

3.2. MPC formulation

The MPC tested at the field site has a form of the Mixed Integer
Linear Programming (MILP) problem and is presented in this Section.
Let 𝑁𝑝 and 𝑘 (∈ {0,… , 𝑁𝑝 − 1}) be the prediction horizon and the
𝑘th prediction step. The essential control variables are the chiller plant
mode and primary water flow rate setpoint as discussed in Section 2.1.
Let 𝑗 and 𝐽 represent a plant mode (see Fig. 3 for the mode enumer-
ation) and the total number of plant modes. Define 𝑠𝑗 [𝑘] (∈ {0, 1})
as the indicator for ON/OFF status for the 𝑗th plant mode at time 𝑘.
Denote also actions of the start-up and shut-down of the 𝑗th mode at
𝑘 as 𝛿𝑂𝑁,𝑗 [𝑘] (∈ {0, 1}) and 𝛿𝑂𝐹𝐹 ,𝑗 [𝑘] (∈ {0, 1}), respectively. That is,
𝛿𝑂𝑁,𝑗 [𝑘] = 1 implies that the 𝑗th mode was OFF at least the previous
time step (𝑘 − 1) and is about to turn ON at 𝑘.

The MPC seeks to find the optimal sequence of plant mode and
chiller load which minimizes both the peak net power consumption
and carbon emission (with some weights) over the prediction horizon
while meeting campus cooling load and maintaining the state of charge
(SOC) within a certain level at any point of time. The net power
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consumption means the total power consumption (𝑃𝑝𝑙𝑎𝑛𝑡 + 𝑃𝑛𝑜𝑛𝑝𝑙𝑎𝑛𝑡)1

subtracted by the renewable generation (𝑃𝑝𝑣) which can be measured
at the grid connection point. To promote self-consumption of the on-
site PV generation, the MPC is formulated to get no incentives for
negative net power consumption (that is, the excess renewable energy
generation). The formulation is summarized below.

𝑚𝑖𝑛
𝑁𝑝−1
∑

𝑘=0

(

𝐸[𝑘] × 𝑃+
𝑛𝑒𝑡[𝑘]

)

+ 𝜔𝑑 × 𝑑 + 𝜔𝑥 × 𝑣𝑥 (1)

𝑠𝑗 [𝑘] − 𝑠𝑗 [𝑘 − 1] = 𝛿𝑂𝑁,𝑗 [𝑘] − 𝛿𝑂𝐹𝐹 ,𝑗 [𝑘] (2)

𝛿𝑂𝑁,𝑗 [𝑘] + 𝛿𝑂𝐹𝐹 ,𝑗 [𝑘] ≤ 1 (3)
𝑂𝑇𝑗−1
∑

𝑙=0
𝛿𝑂𝑁,𝑗 [𝑘 − 𝑙] ≤ 𝑠𝑗 [𝑘] (4)

𝑂𝑇𝑗−1
∑

𝑙=0
𝛿𝑂𝐹𝐹 ,𝑗 [𝑘 − 𝑙] ≤ 1 − 𝑠𝑗 [𝑘] (5)

𝐽
∑

𝑗=1
𝑠𝑗 [𝑘] ≤ 1 (6)

𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵
[

𝑄𝐶𝐻 [𝑘] −𝑄𝐵𝐿[𝑘]
𝑇𝑂𝐴[𝑘] − 𝑇 0

ℎ

]

(7)

𝑥𝑚𝑖𝑛[𝑘] − 𝑣𝑥 ≤ 𝑥[𝑘] ≤ 𝑥𝑚𝑎𝑥[𝑘] + 𝑣𝑥 (8)

𝑄𝐶𝐻 [𝑘] =
𝐽
∑

𝑗=1
𝜈𝑗 [𝑘] (9)

𝑄𝑚𝑖𝑛,𝑗𝑠𝑗 [𝑘] ≤ 𝜈𝑗 [𝑘] ≤ 𝑄𝑚𝑎𝑥,𝑗𝑠𝑗 [𝑘] (10)
𝐽
∑

𝑗=1
(𝑎𝑗𝜈𝑗 [𝑘] + 𝑏𝑗𝑠𝑗 [𝑘]) + 𝑃𝑛𝑜𝑛𝑝𝑙𝑎𝑛𝑡[𝑘] − 𝑃𝑝𝑣[𝑘] ≤ 𝑃+

𝑛𝑒𝑡[𝑘] (11)

0 ≤ 𝑃+
𝑛𝑒𝑡[𝑘] (12)

𝑃+
𝑛𝑒𝑡[𝑘] ≤ 𝑑 (13)

𝑥[0] = 𝑧0 (14)
0 ≤ 𝑣𝑥 (15)
0 ≤ 𝑑. (16)

The binary decision variables are

𝑠𝑗 [𝑘], 𝛿𝑂𝑁,𝑗 [𝑘], 𝛿𝑂𝐹𝐹 ,𝑗 [𝑘], (17)

and real-number decision variables are

𝑄𝐶𝐻 [𝑘], 𝜈𝑗 [𝑘], 𝑃+
𝑛𝑒𝑡[𝑘], 𝑥[𝑘], 𝑣𝑥, 𝑑, (18)

where 𝑘 ∈ {0, 1,… , 𝑁𝑝 − 1} and 𝑗 ∈ {0, 1,… , 𝐽}.
The first term, ∑𝑁𝑝−1

𝑘=0 𝐸[𝑘] × 𝑃+
𝑛𝑒𝑡[𝑘], in Eq. (1) represents the total

amounts of GHG emission and energy cost over the prediction horizon.
𝐸[𝑘] indicates a weighted sum of the energy cost rate [$∕kWh] and the
MOER. The last two terms of 𝑑 and 𝑣𝑥 are auxiliary variables meaning
he peak power and the constraint violation for SOC, respectively. Each
quality and inequality constraint is described as follows.

• Eq. (2) specifies the relationship between the ON/OFF status and
start-up/shut-down variables.

• Eq. (4) enforces the minimal ON time (𝑂𝑇𝑗) for the 𝑗th plant
mode. That is, once the mode is turning ON, it has to stay ON
for the time period.

• Eq. (5) describes the minimal OFF time constraint (the minimal
OFF time was set as the minimal ON time).

• Eq. (6) means that at most one plant mode is feasible for each
time.

1 𝑃𝑛𝑜𝑛𝑝𝑙𝑎𝑛𝑡 represents uncontrollable electrical load occurring outside of the
ooling plant such as building-level fan powers, lighting and plug loads.
6

• Eq. (7) describes the constraint that the sum of chiller load and
TES discharging heat must meet buildings’ cooling load 𝑄𝐵𝐿 at
each time step, and the dynamics of the state of charge (SOC,
𝑥) in the chilled water tank. A simple, 1-dimensional thermal
network model consisting of one resistance and capacitance was
developed for the tank and those parameters were estimated with
measurements. Then, the continuous LTI was discretized in time.
(𝐴,𝐵) are the system matrices of the discrete LTI model. See
Appendix A.1 for more detailed descriptions.

• Eq. (8) represents SOC constraint. This also defines the auxiliary
variable of 𝑣𝑥 which is introduced to ensure a non-empty feasible
set of the optimization problem.

• Eq. (9) defines auxiliary variables, 𝜈𝑗 , to represent the total chiller
load 𝑄𝐶𝐻 .

• Eq. (10) is an algebraic expression of the following logic: IF the
𝑗th plant mode is OFF, THEN the total chiller load (𝑄𝐶𝐻 ) is 0. IF
the 𝑗th plant mode is ON, THEN the total chiller load is bounded
by 𝑄𝑚𝑖𝑛,𝑗 and 𝑄𝑚𝑎𝑥,𝑗 . Note that when the 𝑗th mode is ON, these
constraints make 𝑣𝑖,𝑖≠𝑗 = 0, and 𝑣𝑗 = 𝑄𝐶𝐻 from Eq. (9).

• Eqs. (11) and (12) defines the auxiliary variable 𝑃+
𝑛𝑒𝑡 representing

the positive net power consumption. Chiller plant power (not
chiller power) is modeled as the sum of the chiller plant power at
each mode as shown in the underlined term. 𝑎𝑗 is a constant and
𝑏𝑗 is a function of wet-bulb temperature. The pair of (𝑎𝑗 , 𝑏𝑗 ) was
obtained from the historical data for each plant mode using the
Least Squares Method. See Appendix A.2 for more details.

• Eq. (13) defines 𝑑 as an upper bound of the positive net power.
This is to minimize the maximum power consumption over the
prediction horizon using the epigraph formulation [23].

The MILP formulation adopted the Generalized Disjunctive Pro-
gramming (GDP) and the Convex-Hull reformulation approaches [24–
26] developed in the field of chemical processing, mathematical pro-
gramming approaches for the Unit Commitment problem [27–29] in
the electrical power system, and a linear reformulation method. We
refer to our companion paper for those technical details.

Note that the MPC formulation only requires modeling TES, i.e., (𝐴,
𝐵) in Eq. (8), and the plant power for each plant mode, i.e., (𝑎𝑗 , 𝑏𝑗 )
in Eq. (10), not individual components of chillers, cooling towers and
pumps, and control sequences. This substantially reduced the sensor re-
quirement and effort to implement the MPC compared to one that starts
from individual component models. In addition, the MILP formulation
allows achieving global optimality, feasibility, computational efficiency
and stability. The drawbacks of this simplified modeling approach are
(1) potential inaccuracy on the plant power prediction, (2) potential
loss of energy savings by not optimizing the condenser/chilled water
supply temperature setpoints, and (3) unclear ways of determining
the lower and upper bounds of the chiller capacity for each plant
mode (because chiller capacity varies with condensing and evaporat-
ing temperature). However, (1) the proposed modeling approaches
resulted in reasonable accuracy (around 20% relative error over a
wide range of operating conditions), (2) for many large cooling plants,
heuristic control sequences that determine supply water temperature
setpoints are already near energy-optimal (e.g., set the condenser water
temperature setpoint near wet-bulb temperature and set the chilled
water supply temperature setpoint as high as possible up to the point
where the thermocline is maintained, and (3) facility operators have
prior-knowledge for reliably setting those capacity bounds.

None of building level devices such as thermostats and air handling
unit (AHU) supply fans were considered as controllable loads in the
MPC problem. This was because the central plant energy manage-
ment system (EMS) is not fully integrated with building level EMSs.
Therefore, uncontrollable loads in this study are buildings’ cooling load
(𝑄𝐵𝐿), non-plant electrical load (𝑃𝑛𝑜𝑛𝑝𝑙𝑎𝑛𝑡) and PV generation (𝑃𝑝𝑣),

hich are exogenous inputs to the MPC problem as indicated in Eqs. (8)
nd (11). On the other hand, the controllable load is the thermal load
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for chillers (𝑄𝐶𝐻 ). The controllable load would not affect comfort
because of the hard constraint that the sum of chiller loads and tank
discharging rate must meet the total buildings’ cooling load.2

3.3. Selection of control design parameters

The hyperparameters of the MPC are weighting factors of 𝜔𝑑 and
𝜔𝑥 in Eq. (1), prediction horizon 𝑁𝑝 and time step 𝛥𝑡 at which an
optimal decision is updated. Like other control design practices, those
were configured by a combination of some parametric studies, physical
insights for the system and previous studies in the literature as follows.

A large number was assigned to 𝜔𝑥. This is because 𝜔𝑥 is essentially
the penalty coefficient of the penalty function method that replaces
a hard constraint with a penalty function multiplied by the penalty
coefficient. It penalizes the SOC constraint violation as described in
Section 3.2. Since the solution of a penalty problem converges to
the optimal solution of the original, hard constraint problem as the
coefficient goes to infinity [30, Chapter 9], the solution must not
be sensitive to the coefficient once it is sufficiently large enough. In
addition, as described at the end of Section 2.1, the demand charge is
much more dominant than the energy charge. The site characteristic
requests put the peak demand reduction first and therefore we set a
high value to 𝜔𝑑 . After carrying out a few parametric studies, the value
of 200 was selected for both parameters near which optimal decisions
do not vary significantly: the relative 2-norm error between the optimal
trajectories for 𝜔𝑥 = 𝜔𝑑 = 200 and 𝜔𝑥 = 𝜔𝑑 = 500 was less than 0.01%
for all decision variables.

For choosing an appropriate time step, we considered (1) a better
response to unpredicted events (e.g., abrupt increase/decrease of cool-
ing load) and (2) a time scale separation between the MPC loop (outer
control loop that determines the plant mode and flow rate setpoint)
and local control loop (inner control loop that adjusts the primary
pump speed to track the flow setpoint). For the first purpose, it would
be helpful to reduce the time step since the MPC problem can be re-
calculated with updated measurements from the plant, especially SOC,
and forecast data. However, for the second purpose, it is preferred
to increase the time step. This is because otherwise instability might
be incurred due to dynamic interactions between the inner and outer
control loops [31]. With the knowledge of the time constant for the
variable speed pump control loop (ranging from 5 to 10 min), a 30 min
to an hour was considered to be a proper time step, and the latter was
chosen in this study.

The prediction horizon was restricted by the forecast length of
the carbon emission signal which is 2 days. Instead of performing a
sensitivity analysis to the horizon which is not straightforward for
energy systems (because increasing the horizon introduces additional
forecast errors to MPC and, for the analysis, the stochastic process of
the forecast errors needs to be modeled that depends on underlying
forecasting mechanisms and the nature of disturbances), we set it to
the upper bound of the 2-day by referring to a previous, comprehensive
simulation study [32]. The paper modeled a stochastic process of
forecast errors with several different stochastic difference equations and
investigated the effect of the size on the MPC performance for TES
systems. The results showed that the increasing prediction horizon low-
ers the cost even considering forecast errors and the MPC performance
becomes insensitive as the horizon increases.

2 The constraint was implicitly defined in Eq. (7) via a variable elimination:
ee Eq. (21).
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Table 2
MPC communication data points.

Read/write Communication data points Unit Symbol

Read Campus net power consumption [kW] 𝑃𝑛𝑒𝑡
Read Solar generation [kW] 𝑃𝑝𝑣
Read Central plant power consumption [kW] 𝑃𝑝𝑙𝑎𝑛𝑡
Read State of charge [%] 𝑥
Read Outdoor air temperature [◦F] 𝑇𝑂𝐴
Read Outdoor air wet-bulb temperature [◦F] 𝑇𝑤𝑏
Read Primary water flow rate [gpm] 𝑉𝑝
Read Chilled water supply temperature [◦F] 𝑇𝐶𝐻𝑊 𝑆
Read Return (secondary) water flow rate [gpm] 𝑉𝑟
Read Chilled water return temperature [◦F] 𝑇𝑟
Read Entering chiller temperature [◦F] 𝑇𝐶𝐻𝐸
Write Primary water flow rate setpoint [gpm] 𝑉𝑝,𝑆𝑃
Write Plant mode request [–] 𝑠𝑗

3.4. Data communication architecture between MPC and EMS

Table 2 shows the complete list of data points to implement the
MPC for the campus. The SOAP (Simple Object Access Protocol) is
the communication protocol utilized for exchanging data between the
MPC server and the energy management system (EMS) at UC-Merced,
and the suds python library was utilized for the communication. The
MPC server sends read requests for the datapoints, and receives the
corresponding data back using the SOAP interface. The collected data
was then used to update building load forecasts with weather forecast
updates and implement/analyze MPC results.

3.5. MPC implementation and interface

The flow diagram of implementing MPC at the campus cooling
TES plant is shown in Fig. 5. At each sampling time (𝛥𝑡 = 1 h),
the MPC sever receives the read datapoints (listed in the Table 2),
and two-day (𝑁𝑝 = 48) ahead forecasts of ambient temperature us-
ing NOAA (National Oceanic and Atmospheric Administration) API,
solar generation (𝑃𝑝𝑣[⋅]) using pvlib [33], and MOER (𝐸[⋅]) using the
WattTime API described in Section 3.1. The MPC server then predicts
campus cooling load (𝑄𝐵𝐿[⋅]) and non-cooling plant electric power
consumption (𝑃𝑛𝑜𝑛𝑝𝑙𝑎𝑛𝑡[⋅]) over 𝑁𝑝 using a Machine Learning technique
(Artificial Neural Network using tensorflow [34]). Then, it solves the
MPC problem (Section 3.2) with updated information and determines
the sequences of plant mode 𝑠𝑗 and chiller load 𝑄𝐶𝐻 over 𝑁𝑝. GLPK
GNU Linear Programming Kit) package which is free open-source
oftware developed to solve large-scale linear and mixed integer linear
rogramming problems is utilized as the optimization solver. The first
ime step decision 𝑠𝑗 [0], 𝑄𝐶𝐻 [0] is chosen and converted to the primary
low setpoint (𝑉𝑝,𝑆𝑃 , see Table 2), and post the write datapoints to the
MS. This process was repeated for every sampling time (1 h).

The conversion of the MPC decision variable of 𝑄𝐶𝐻 [0] to the EMS
nput, i.e., the flow rate setpoint for the primary pumps, is straightfor-
ard via the energy balance equation since the chilled water supply

emperature setpoint is fixed (due to the restriction for maintaining
he thermocline), entering chiller temperature can be measured (see
able 2), and desired chiller load was determined. More precisely, it
eads the entering chiller water temperature and the chilled water sup-
ly temperature setpoint (39 ◦F), and computes the flow rate setpoint
s follows.

𝑝,𝑆𝑃 = 𝑄𝐶𝐻∕(𝜌𝑤𝑎𝑡𝑒𝑟 × 𝐶𝑝,𝑤𝑎𝑡𝑒𝑟 × (𝑇𝐸𝐶𝐻𝑊 − 𝑇𝐶𝐻𝑊 𝑆,𝑆𝑃 )) (19)

where 𝑉𝑝,𝑆𝑃 is the water flow rate setpoint [gpm] and 𝑇𝐸𝐶𝐻𝑊 are
the entering chilled water temperature and 𝑇𝐶𝐻𝑊 𝑆,𝑆𝑃 is the chilled
water supply temperature setpoint for (downstream) chillers. Although
the plant mode is updated for the sampling time (an hour), the flow
rate setpoint is more frequently updated with a finer timestep reso-
lution (20 min) to consider the time variant entering chilled water
temperature while meeting the desired chiller load.

https://github.com/suds-community/suds
http://www.gnu.org/software/glpk
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Fig. 5. Flow diagram of MPC implementation at a campus cooling plant.
4. Site performance of MPC

The presented MPC has been implemented for the campus cooling
TES plant for several test periods, and sample test results for a week in
May 2021 are shown and discussed in this section. We start describing
our approach to evaluate performance of MPC compared with the
baseline control described in Section 2.3.

4.1. Selection of baseline control period for actual performance assessment

To make fair comparisons between two controllers and evaluate
actual performance for the real site, it is ideal to select a baseline period
where (1) the baseline control was implemented, (2) uncontrollable
disturbances including campus cooling load, MOER signal and on-site
solar generation were consistent to that of the MPC period, and (3)
initial and final SOC were close enough to compare. Although we have
a large period historical data for the baseline control (more than a
year), there was no such period where all conditions were met. This
is because having a consistent solar generation limits the month of a
baseline period (because a different month results in different solar
trajectories of solar azimuth and zenith angles as the Earth moves
through its orbit), and the grid condition is stochastic (because the
MOER is a complex function of the total grid demand, weather, types
of operating power generators).

To resolve this, we first selected the same month of a year for
the baseline period to that of the MPC period in order to have the
same solar angle trajectories. Then, we narrowed down the period
such that the outdoor air temperature profile is reasonably consistent
with that of the MPC-period. Here, we assumed the daily-averaged
outdoor air temperature is a proxy of the campus cooling load. The
correlation between daily-averaged campus cooling load and outdoor
air temperature is shown in Fig. 6. The strong correlation between them
validates our assumption. Then, we assumed that the grid condition
during the two control periods were identical, and applied the MOER
8

Fig. 6. Correlation between outdoor air temperature and campus cooling load
(measurements).

profile for the MPC period to the baseline period to analyze carbon
emission for the baseline period. This makes sense because the baseline
control logic is independent of the MOER signal and therefore the
change of MOER profile for the baseline control would not change the
result of energy consumption and peak power.

Fig. 7 compares the profiles of the outdoor temperature, site solar
generation and MOER for the selected baseline control period and the
MPC period. The first subfigure shows that the MPC period is slightly
warmer than the baseline period but is reasonably similar (mean values
are 19.9 and 22.0 ◦C or 67.8 and 71.7 ◦F for the baseline and MPC
periods, respectively). The solar generation is almost identical because
the two periods are in the same month (baseline: May/2020, MPC:
May/2021). The last subfigure shows the historical data for the MOER
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Fig. 7. Comparisons of outdoor air temperature, solar generation and CO2 emission rate between the selected baseline control period and MPC period.
ignal for the MPC period and this profile was applied to estimate
arbon emission for the baseline period.

.2. MPC performance assessment

.2.1. Numerical performance
The mixed integer linear MPC formulation, Eq. (1)–(16), consists

f 3𝐽 𝑁𝑝 and (𝐽 + 3)𝑁𝑝 + 2 numbers of binary and real decision
ariables, and (𝐽 + 2)𝑁𝑝 + 1, (4𝐽 + 3)𝑁𝑝 and 2𝑁𝑝 + 2 numbers of
quality, inequality, and bounding constraints respectively. With 𝑁𝑝 =
48 and 𝐽 = 4, the optimization problem has around 1300 constraints
(289 equality, 912 inequality and 98 bounding constraints) and 1000
variables to be optimized (576 binary variables (𝑠𝑗 [⋅], 𝛿𝑂𝑁,𝑗 [⋅], 𝛿𝑂𝐹𝐹 ,𝑗 [⋅])
and 338 continuous variables (𝑄𝐶𝐻 [⋅], 𝑥[⋅], 𝜈𝑗 [⋅], 𝑃+

𝑛𝑒𝑡[⋅], 𝑣𝑥, 𝑑)). For a
64-bit computer with a dual core 2.13 GHz CPU and 8 GB RAM, the
computing time 𝑖th the GLPK solver was an order of seconds (the
average computing time and standard deviation were 9.72 and 0.21 s)
despite the size of the optimization problem.

4.2.2. Comparisons of closed-loop responses between baseline control and
MPC

Fig. 8 compares the closed-loop responses of the baseline con-
trol and the MPC. The first sub-figure shows the campus net power
consumption, i.e., total consumption subtracted by the on-site PV gen-
eration, and the second sub-figure shows the profiles of the state of
charge (measured from the relative height of the thermocline) for the
two control periods. The blue and red colors are dedicated to the
baseline control and MPC, respectively. The shaded areas indicate when
the MOER is higher than 0.3 [mTonCO2e/MWh], which is equal to the
average level of GHG emission for a natural gas power plant in the U.S.
according to the EPA’s Emissions and Generation Resource Integrated
Database (eGRID). In other words, the shaded areas are when the grid
is dirty, and non-shaded areas are when the grid is clean. First, look
at the afternoon period for the first day where the state of the charge
decreases from 100% to 60% for the baseline control. This means that
the control utilizes the stored thermal energy to meet the entire campus
cooling load during the daytime period. For the time being, the chillers
were off, causing significant excess power around 2 MW that was sent
9

back to the grid as shown in the first subfigure. Compare the behavior
Table 3
Comparisons of self-consumption of on-site PV energy between a baseline control and
MPC.

Control
period

Solar
generation
[MWh/day]

Excess solar
[MWh/day]

Solar
self-consumed
[MWh/day]

Solar self-
consumption
[%]

Baseline 32.6 8.9 23.7 72.8
MPC 31.7 0.2 32.5 99.2

of the state of charge with the MPC for the same period. The MPC
actually increased the state of the charge which implies that the chillers
were ON, met the entire campus cooling load and charged the storage.
Since the MPC increased the chiller power during the period, the excess
power export was eliminated as shown in the first subfigure. Second,
when the grid condition got dirtier, the baseline control increased the
state of charge and this charging process continued until the TES was
fully charged (see the evening time for the first day in the second
subfigure). On the other hand, the MPC consumed less energy when
the grid was dirty by leveraging the stored energy from the on-site
renewable. This pattern repeats for the entire test period as shown in
the figure.

It should be mentioned that facility operators requested to preserve
50% to 60% of the charge level during the MPC implementation period
which significantly limits savings potentials. This can be confirmed in
the second subfigure.

The self-consumption of on-site renewables between those two
controllers are summarized in Table 3. The baseline control, which
is independent of renewable generation, consumed 23.7 MWh (daily
average) out of 32.6 MWh (daily average) total solar generation,
resulting in 72.8% self-consumption ratio. On the other hand, the
MPC control consumed almost all on-site PV energy resulting in a
99.2% self-consumption ratio. In other words, the increment of the
self-consumption ratio via MPC is 26.4%.

4.2.3. Benefits of MPC to the grid
Although the time series comparison provides comprehensive in-

formation, it is difficult to capture the overall behavior of the MPC.
To more clearly characterize this behavior, we averaged daily power
consumption profiles for the two controls and they are shown in Fig. 9.
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Fig. 8. Comparisons of experimental net power consumption and state of charge between the baseline and MPC at UC-Merced (red: baseline, blue: MPC).
Fig. 9. Comparisons of representative (daily averaged) net power profiles between the baseline control and MPC at the UC-Merced for the weeks of evaluation in May.
Like before, the blue and red lines are associated with the baseline
control and MPC. It is interesting to see that the representative (daily
averaged) profiles at the site look similar to the duck-curve which the
grid is experiencing. This figure clearly shows that the MPC consumes
and stores more energy during the daytime using the clean on-site solar,
and consumes less during evening and night time when the grid gets
dirty by leveraging the stored energy.

The smooth load curve could provide significant benefits to the grid
summarized below.

• The higher consumption during the daytime addresses the issue
of high renewable curtailment in CAISO (see Fig. 2)

• The proper operation of the chilled water storage in response
to the on-site renewable allows for tolerating the increasing PV
penetration to the grid

• The reduced ramping rate during the evening time addresses the
issue of running gas turbines to follow the high ramping rate of
the neck of the duck-curve as discussed in Introduction

• The self-consumption of the behind-meter solar reduces the con-
cern of voltage regulation in the distribution line and improves
the grid reliability and efficiency

4.3. Site assessment of GHG reduction

The comparison of GHG emission rates are shown in Fig. 10. One
can see visible reduction in the emission rate. The daily average value
of the carbon reductions using the MPC is 1 [mTonCO2e] per day. The
10
unit metric ton CO2e is equivalent to the emission rate driving a car
for around 2500 miles or 4023 km (roughly San Francisco, California
to Washington, DC). Again, the reduction was achieved by coordinating
operations of cooling TES plant with on-site PVs in response to the grid
carbon emission signal. The calculated GHG savings is around 10% but
it is anticipated that more than 20% reduction can be achievable for
the plant once the minimum state of charge constraint (varied between
50% to 60%) can be relaxed.

4.4. Benefit of MPC to the facility

Practically, one of the main driving forces for facility operators
to adopt advanced controls is an economic benefit rather than GHG
reduction. Therefore, showing a utility cost reduction by using the MPC
in addition to the grid benefits and identifying the mechanism of the
potential cost savings is the key for adoption. Traditionally, the peak
electric load in buildings likely occurs during the daytime due to high
energy consumption for the period, e.g., for running air handling unit
fans and increased plug loads associated with occupants. However, the
high penetration of renewables changes the situation: the high energy
consumption during the daytime is compensated by the solar energy
and the peak could happen during the evening or nighttime when
solar is not available, especially in California. This means, if nighttime
energy consumption can be shifted to daytime, it could reduce the peak
power consumption. As shown above, MPC tends to operate chillers
more during daytime and less during nighttime which is the mechanism
of utility cost savings potential of MPC.
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Fig. 10. Comparisons of GHG emission rate between MPC and baseline storage-priority control at the UC-Merced.
Table 4
Summary of MPC relative performance compared to baseline storage priority control
for a central cooling TES plant with on-site PV when 50% of TES capacity was
utilized.

Increment of PV
self-consumption ratio [%]

CO2 reduction
[%]

Peak demand
reduction [%]

26.4 9.6 9.8

For the comparison periods discussed in the previous section
Fig. 8), the peak power reduction was around 10%. The peak de-
and reduction is not that significant considering the size of TES (2
illion gallons of water). This is mainly because the facility oper-

tors requested to preserve 50% to 60% of the charge level during
he MPC implementation period, as mentioned in Section 4.2.2. This
ignificantly limits the capability of a peak demand reduction and
O2 reduction, because during the nighttime chillers have to run to
aintain the minimum charge level. If the strong constraint has been

elaxed, MPC would not need to operate chillers for the nighttime and
ould increase the savings. It should be mentioned that even with

he conservative 10% peak reduction, it attracts the interest of facility
perators because of the magnitude of power consumption for the
ampus-level cooling plant. For the UC-Merced case, the utility cost
avings are around ten thousand dollars per month.

.5. Summary of MPC performance

The MPC performance related to self-consumption, CO2 emission
nd peak power compared to the baseline storage control are summa-
ized in Table 4. Considering the fact that only around 50% of TES
apacity was utilized during this demonstration, the site demonstration
esults show that central cooling TES plants can be cost-effective re-
ources for renewable energy integration and grid decarbonization by
nly upgrading control strategies.

. Barriers for a large scale MPC deployment for large central
lants

In this section, we describe barriers and challenges for a large scale
PC deployment that were identified during this demonstration work,

nd share lessons-learned to guide and facilitate future development
f MPCs for large central plants. Table 5 lists the challenges, efforts
equired to address them, and an indication of the level of effort
equired. It should be mentioned that the challenges and level of effort
eeded to address them are from the demonstration cases, and may
iffer from site to site.

Haves et al. [38] carried out an experimental MPC evaluation and
bserved similar difficulties and concluded the following as key barriers
or commercializing the MPC technology:

• The component-wise calibration process is labor intensive
• It was not possible to rely on manufacturer specifications, and

performance was subject to change after maintenance and failures
11
• Obtaining historical data for model calibration that covers oper-
ating envelope of components is in question

• Flow-rate sensors were inaccurate for many reasons including
inappropriate sensor location

In the MPC demonstration of this paper, the most significant effort
was required for MPC modeling, which includes (1) identifying avail-
able and reliable sensor points from EMS, (2) understanding an existing
control sequence to identify proper controllable points and to avoid po-
tential conflicts between MPC and EMS, (3) identifying or redeveloping
a suitable input–output pair and MPC model structure, according to
these points and the HVAC system characteristics (including the control
sequence), (4) investigating the data quality (e.g., via the correlation
analysis) and operating envelope, and designing an experiment for high
quality data if necessary, (5) validating the model accuracy, and (6)
repeating the process of (3) to (5) until one is confident.

Since the control sequence, reliable sensor points, and data qual-
ity/comprehensiveness may differ from site to site and each of them
limits a range of input–output pairs and the corresponding model
structures, a customized modeling solution and MPC formulation are
often required, which is clearly a barrier for MPC deployments. In
addition, many of the issues described in Table 5 are time-consuming
and labor-intensive to resolve and some of them could be infeasible to
fix due to limited resources of time, cost and labor, and other technical
and security issues. To overcome those challenges, it is necessary to
investigate modeling and MPC approaches which are less interruptive
and rely on less sensors. An example research topic would be combining
a modeling strategy that relies on less sensors with the robust MPC
technique (e.g., [39–41]) to explicitly account for the modeling and
forecast errors.

The assessment of MPC formulations using a detailed simulation
model before site-deployment can facilitate the control design process,
mitigate potential risks and provide the value proposition. The barriers
associated with simulation studies that we identified are:

• Developing a detailed, site-specific model requires significant
time. This is not because of modeling the physics and hydraulics
as modular models exist, but because understanding and mod-
eling the control sequences of the EMS are time-consuming as
sequences are often outdated or not well documented but can
interfere with the MPC, and calibration of models is hard as
proper measurement instrumentation is often lacking.

• The current state-of-the-art building energy simulation tools,
e.g., EnergyPlus [42], are not detailed enough to capture some
critical MPC failures and risks. For example, we found that the
supply water temperature becomes unacceptably high, lasting for
about 30 min to an hour, whenever the plant mode switches.
This was due to the time-lag required for rearranging isolation
valves and internal dynamics of chillers during mode changes
which are not typically modeled. Indeed, one of our trials with an
initial version of MPC that did not take this into account caused
serious supply water temperature fluctuations. This could have
been avoided if it was tested with a detailed simulation model.
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Table 5
Issues confronted during implementation of MPC at a demonstration site.
Category Issue Effort and approximate level (S: small, M:

medium, H: high)

Data
/modeling

There are a large number of HVAC components
and data points

Effort for data pre-processing and post-processing
(S to M)

Data
/modeling

Not all data points in the EMS are managed and
up-to-date (due to the large number of data points)

May results in unrealistic models such as
unreasonably high COP. Needs careful and manual
review of all potential data points for MPC design
(S to M)

Data
/modeling

A tagging scheme for EMS data points is not
standardized

Extra effort to find and confirm right data points
for MPC modeling and implementation (S to M)

Data
/modeling

Not all flow-rate sub-meters (including differential
pressure transducers) and electric power
sub-meters for individual components are available
and reliable. This means the thermal load and/or
power consumption data for each component is
unavailable or unreliable

Challenges of using well-established HVAC
modeling approaches (e.g., component-wise
models). Requires identifying or developing a
tailored modeling approach that relies on available
measurements (H)

Data
/modeling

The mass and energy balances calculated from
measurements does not reasonably hold (30% to
50% mismatch), particularly due to the
uncertainty in flow rate information

Challenges of using well-established HVAC
modeling approaches (M-H)

Data
/modeling

Historical EMS data does not cover a wide range
of operating conditions, and there are strong
correlations between them

Challenges for any data driven modeling
approaches. Likely results in a poor model (H):
refer to Ljung [35], Söderström and Stoica [36]
and Kim et al. [37] for how data cross-correlations
can negatively affect model estimations.

Model-
ing/forecast

Models and forecasts are always uncertain High effort to improve prediction accuracy (H).
Makes an MPC to behave unexpectedly and
sub-optimally

Modeling It is a valuable step to test and compare candidate
MPC solutions, before site-deployment, using a
detailed simulation model. This is especially true
for testing new MPC approaches or when applying
to systems with unique or complex characteristics.
The virtual control testbed should be detailed
enough to identify potential MPC failures and risks
(e.g., chiller surge, high return water temp issue
during a chiller cycle due to chiller dynamics)

Developing a detailed, site-specific model requires
significant time (H). Templates of testbed models
would facilitate the model development and MPC
design processes

Operational
restriction

Potential conflicts between MPC decisions and
EMS logics

Requires understanding of complex EMS control
sequences, performing iterative MPC functional
tests and interactions with facility operators (H)

Operational
restriction

Controllability of the HVAC system is limited by
system design, system faults, and/or operator
requirements. For example, ON/OFF operations of
components (chillers, cooling towers, pumps and
isolation valves) are interlocked each other in our
study and they cannot be controlled separately

May require customizing a model structure and
MPC formulation: adjusting MPC model,
constraints, and objective to accommodate
controllability limitations (H)

Operational
restriction
/safety

Plant mode switching results in a large fluctuation
of the chilled water supply temperature due to
rearrangements of isolation valves and
primary/condenser water pumps, and the internal
dynamics of chillers. The undesired transient lasts
from 10 min to an hour raising significant security
issues

Requires adding an algorithm to an MPC to
prevent frequent mode switching

Operational
restriction
/safety

Revising EMS logic is practically difficult and it
requires identifying potential conflicts after
updates, convincing facility manager and operators
to accept necessary changes of the EMS, and
ensuring operational safety during the MPC
demonstration

Limits changes of EMS logic in favor of MPC
formulation and implementation (H)

Safety Lack of liability by MPC implementer for a
potential operation failure during MPC
implementation

Effort to ensure operational safety (M)

Others There are many stakeholders for a large plant
operation including programmer, IT person,
multiple facility operators, facility managers

Coordination effort for MPC implementation (H)

Customer
adoption

Facility operators are not familiar with the MPC
concept since it is not intuitive compared with
rule-based control

Iterative effort for convincing them (M-H)

Customer
adoption

Unclear value proposition and/or improper
incentives

Iterative effort for convincing them (M-H)
12
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Templates of detailed simulation models for a variety of district en-
ergy system configurations, which include representative EMS control
sequences and are detailed enough to identify potential MPC failures
and risks would facilitate the MPC design processes.

6. Conclusions

Cooling TES plants are one of the oldest and most reliable energy
storage technologies. This paper shows that cooling plants with existing
TES could be one of the most cost-effective resources to achieve state
and government carbon neutrality goals, since it does not require
installing new energy storage but only requires changing the operation.
We presented an MPC and its real site performance for a campus-
level cooling TES plant that coordinates operation of multiple chillers,
chilled water tank and behind-meter PVs. It aims at self-consuming
on-site generation from a 4 MW solar farm, lowering carbon emission
at the grid and minimizing utility bills. The performance of MPC
was assessed by comparing with a carefully selected baseline period
where the storage priority control has been implemented. The MPC
reduced the excess PV power by around 25%, the greenhouse gas
emission by 10%, and peak demand by 10%. The savings estimates
were conservative, since only a partial usage of the chilled water tank
was allowed during the MPC implementation period. The capability of
achieving utility peak demand in addition to lowering GHG emission is
the uniqueness of the MPC. Future work will include combining with
a robust MPC strategy, and a longer-term implementation of the MPC
(>1 year) to provide a more comprehensive savings assessment and
reliability of the MPC technology.
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Appendix

A.1. Chilled water tank modeling

Like the moving boundary modeling approach for chilled water
tanks, it is assumed that the temperature distributions for the cold and
warm water within the tank are uniform. Then, the energy balance for
the chilled water tank becomes,

𝐶𝑤
𝑑
𝑑𝑡

(𝑇𝑐𝑧 + 𝑇ℎ(1 − 𝑧)) = −𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 +
𝑇𝑂𝐴 − (𝑇𝑐𝑧 + 𝑇ℎ(1 − 𝑧))

𝑅
, (20)

where 𝐶𝑤 is the thermal capacitance of the chilled water tank [J/◦C]
(ideally, 𝐶𝑤 = 𝜌𝑤𝑐𝑝,𝑤𝑉0), 𝑧 is the relative height of the thermocline in
the tank, and 𝑅 is the thermal resistance between the water and outdoor
air.

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(∈ R) represents the discharging rate when positive and
charging rate when negative. The sum of the chiller load and discharg-
ing rate must meet buildings’ cooling load at every timestep in order
not to interfere with comfort.

𝑄𝐵𝐿 = 𝑄𝐶𝐻 +𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 (21)

It is practically useful to define a state of charge (SOC) of thermal
energy storage analogous to electrochemical battery, to indicate that
100% SOC means fully charged and 0% SOC means fully depleted. To
do this, we define the SOC, namely 𝑥, as scaled internal energy with
two reference points as follows.

𝑥 ∶=
𝑢0ℎ − 𝑢

𝑢0ℎ − 𝑢0𝑐
, (22)

where 𝑢 is the specific internal energy of the water in the tank, 𝑢0ℎ (𝑢0𝑐 )
is the specific internal energy of water at a reference temperature 𝑇 0

ℎ
𝑇 0
𝑐 ), respectively. Since the water in the tank are sub-cooled liquid, 𝑢

an be expressed as 𝑢 = 𝑐𝑝,𝑤(𝑧𝑇𝑐 )+𝑐𝑝,𝑤(1−𝑧)𝑇ℎ. Then, Eq. (22) becomes

=
𝑇 0
ℎ − (𝑇𝑐𝑧 + 𝑇ℎ(1 − 𝑧))

𝑇 0
ℎ − 𝑇 0

𝑐

. (23)

Plugging this to Eq. (20) results in our final model.

𝐶𝑠
𝑑𝑥
𝑑𝑡

= −
𝑇 0
ℎ − 𝑇 0

𝑐

𝑅
𝑥 + (𝑄𝐶𝐻 −𝑄𝐵𝐿) −

𝑇𝑂𝐴 − 𝑇 0
ℎ

𝑅
, (24)

𝐶𝑠 = 𝐶𝑤(𝑇 0
ℎ − 𝑇 0

𝑐 ). (25)

arameters of 𝐶𝑠 and 𝑅 can be estimated with measurements.
After a discretization, the model can be expressed as the standard

iscrete-time LTI state space model,

[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵
[

𝑄𝐶𝐻 [𝑘] −𝑄𝐵𝐿[𝑘]
𝑇𝑂𝐴[𝑘] − 𝑇 0

ℎ

]

(26)

here A, B is defined by a selection of discretization schemes.
The SOC dynamic of a TES could be modeled analogous to the

lectrochemical battery with different charging and discharging ef-
iciencies (e.g., [41]). This modeling approach naturally leads to a
witching system, requiring a logical proposition to prevent simultane-
us charging and discharging. However, when a TES is modeled with
hermodynamics (i.e., the energy balance) and heat transfer (such as
onvection and conduction between the two layer waters and outdoor
ir temperature to model heat losses) like our paper and Henze et al.
43], the logical proposition can be avoided.
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Table 6
Configuration of MPC parameters.
Symbol Description Value

𝑁𝑝 Prediction horizon 48
𝐽 The total number of plant modes 4
𝜔𝑑 A weight on peak power 200
𝜔𝑥 A weight on SOC violation 200
𝑂𝑇𝑗 Minimal ON and OFF time periods 2
𝑥𝑚𝑖𝑛 The minimum charge limit 55%
𝑥𝑚𝑎𝑥 The maximum charge limit 98%
𝑇 0
ℎ A reference temperature for a warm water 58 ◦F (14.4 ◦C)

𝑇 0
𝑐 A reference temperature for a cold water 40 ◦F (4.4 ◦C)

𝑅 Overall thermal resistance between water and outdoor air
temperature

8.68 [◦C/MW]

𝐶𝑠 Thermal capacitance 391 220.52 [MJ]
𝑄𝑚𝑖𝑛,𝑗 Cooling capacity lower bound for each plant mode [4.33, 5.21, 8.99, 13.38] [MW]
𝑄𝑚𝑎𝑥,𝑗 Cooling capacity upper bound for each plant mode [4.82, 8.69, 13.08, 17.48] [MW]
𝑎𝑗 A plant power coefficient for each plant mode (see Appendix A.2) [0.126, 0.127, 0.126, 0.127] [–]
𝑐𝑗,0 A plant power coefficient for each plant mode (see Appendix A.2) [0.118, 0.191, 0.173, 0.318] [MW]
𝑐𝑗,1 A plant power coefficient for each plant mode (see Appendix A.2) [0.000, 0.006, 0.000, 0.000] [MW/◦C]
A.2. Modeling total plant power as a switching system

For the total plant power modeling, we chose the following, linear-
affine model structure for each mode.

𝑃𝑝𝑙𝑎𝑛𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for the plant mode 0
𝑎1𝑄𝐶𝐻 + 𝑏1(𝑇𝑊𝐵) for the plant mode 1
⋮

𝑎𝐽𝑄𝐶𝐻 + 𝑏𝐽 (𝑇𝑊𝐵) for the plant mode J

(27)

where 𝑄𝐶𝐻 , 𝑇𝑊𝐵 are the total chiller load (or the sum of chiller loads),
and the outdoor wet-bulb temperature, respectively. 𝑎𝑗 is a constant
and 𝑏𝑗 is a function of 𝑇𝑊𝐵 , respectively. There is no restriction on the
model structure for 𝑏𝑗 but the linear affine form, i.e., 𝑏𝑗 = 𝑐𝑗,0+𝑐𝑗,1𝑇𝑊𝐵 ,
is selected in this paper. Since 𝑇𝑊𝐵 is not an optimization variables,
we denote 𝑏𝑗 (𝑇𝑊𝐵) as 𝑏𝑗 for the simplicity of notations. This modeling
approach requires only 6 measurements (the entering chilled water
temperature at the upstream of the primary pumps, supply water tem-
perature, total primary flow rate, the outdoor wet-bulb temperature,
total plant power, and mode) regardless of the number of modes 𝐽 , and
is simple to estimate the coefficients of (𝑎1, 𝑐1,0, 𝑐1,1)⋯ (𝑎𝐽 , 𝑐𝐽 ,0, 𝑐𝐽 ,1) via,
e.g., the Least Squares Method. In this work, we let 𝑐𝑗,1 be zero for all
modes except for the second mode, since the wet-bulb data for those
modes did not cover a wide range.

A.3. MPC parameters

All MPC parameters tuned for the cooling plant are summarized in
Table 6.
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