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Abstract

Greenhouse gas mitigation efforts in the electricity sector emphasize accelerated

deployment of energy efficiency measures and renewable energy resources. We eval-

uate renewable energy (RE) and energy efficiency (EE) technologies across regional

power systems in the United States in terms of carbon dioxide emissions displaced,

operating costs avoided, and capacity value generated. We estimate that external,

emissions-related benefits account for between one quarter and one half of the total

value generated per MWh over our study period. Regional variation in these emis-

sions benefits gives rise to economically significant, regional differences in second-best

production subsidies. This variation is not reflected in the prevailing policy incentives

that currently guide new investments.
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1 Introduction

Investments in renewable energy and demand-side energy efficiency improvements are playing

a critical role in efforts to reduce domestic greenhouse gas emissions. Renewable energy

investment in the U.S. has increased nearly 250 percent since 2004, reaching $36.7 billion in

2013.1 Domestic investments in energy efficiency are estimated in the range of $90 billion

per year.2 Looking ahead, these investments are expected to continue apace (Barbose et al.,

2013; International Energy Agency, 2014).

Over the short to medium-run, returns on these investments in grid-connected renewable

energy (RE) and energy efficiency (EE) manifest indirectly in three ways: (1) RE generation

and efficiency-induced demand reductions reduce operating costs at marginal electricity gen-

erating units; (2) resources can generate “capacity value” if they effectively reduce the costs

of maintaining safe and reliable grid operations; (3) RE generation and efficiency-induced

demand reductions imply fewer emissions at marginal electricity generating units on the

system.

Most – if not all – of the benefits associated with avoided operating costs (1) can be cap-

tured privately in the form of revenues earned by renewable electricity producers or reduced

energy expenditures in the case of energy efficiency. In restructured regions of the United

States, capacity value (2) can also be captured privately via capacity markets, resource ad-

equacy contracts or scarcity pricing in wholesale energy markets. In contrast, a significant

share of the emissions-related benefits (3) remain external to electricity market transactions.

For example, in much of the domestic power sector, damages associated with greenhouse

gas emissions are not currently reflected in operating costs or electricity prices.3 These ex-

ternal, emissions-related benefits serve as an important justification for policy intervention.

Other possible justifications include learning-by-doing, network externalities, and coalition

building.(Bollinger and Gillingham, 2014; Meckling et al., 2015)

In principle, policies designed to support socially efficient levels of investment in RE and

EE should provide incentives that accurately reflect all external, uncompensated benefits

1Michael Liebreich, Bloomberg New Energy Finance Summit (London: Bloomberg New Energy
Finance, 2013), available at http://about.bnef.com/summit/content/uploads/ sites/3/2013/12/2013-04-
23-BNEF-Summit-2013-keynote- presentation-Michael-Liebreich-BNEF-Chief-Executive.pdf; Pew Charita-
ble Trusts, Whos Winning the Clean Energy Race? (2014), available at http://www.pewenvironment.
org/uploadedFiles/PEG/Publications/Report/clen-whos- winning-the-clean-energy-race-2013.pdf.

2Laitner, Skip (2013). ”Calculating the Nation’s Annual Energy Efficiency Investments”, ACEEE.
3Over the time period we consider, the emissions cap imposed under the Regional Greenhouse Gas

Initiative was non-binding. At the time of writing, greenhouse gas emissions from the power sector remain
uncapped in much of the country; California and parts of the Northeast are the exception.
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and costs. Absent other market failures or distortions, a carbon price equal to the marginal

damage caused achieves this objective. However, production and capacity-based subsidies

are far more prevalent.4 Incentives paid on the basis of electricity generated (or energy saved

in the case of efficiency) will likely remain an important source of support into the forseeable

future.5

The prevalence of production-based policy incentives to support investment in RE and EE

resources raises some important questions. First, what level of subsidy per unit of electricity

generated (or saved) can be rationalized on the basis of uncompensated external benefits?

Second, should these incentives be differentiated to reflect differences in external benefits

across regions and/or technologies?

As noted above, proponents of RE and EE subsidies point to a number of potential

external benefits. This paper focuses on a dominant and central source of these benefits:

carbon emissions reductions associated with incremental investments in renewable energy

and energy efficiency.6 We use hourly data from six major independent system operators

(ISOs) in the United States over the period 2010-2012, together with site-specific profiles of

renewable energy production potential and energy efficiency savings potential, to estimate

the impacts of incremental RE and EE investments on regional emissions over the study

period. We compare our estimates of external emissions-related benefits with private returns

on investment and prevailing policy incentives.

Our primary findings can be summarized as follows. First, we document statistically

significant regional variation in the quantity of emissions displaced per MWh of renewable

energy generation (or per MWh of energy saved in the case of EE investments). In contrast,

4In particular, renewable portfolio standards and tax credits are playing a critical role in driving invest-
ment. Twenty-nine states have adopted renewable portfolio standards which mandate minimum levels of
renewable generation. Twenty states have efficiency standards which establish specific targets for demand-
side energy savings.

5Some argue that subsidies targeted at green industries are an essential stepping stone to building political
support for other forms of climate policy (including a carbon tax).(Meckling et al., 2015). Recognizing that
most U.S. states encourage renewable energy developments through state renewable portfolio standards, the
Clean Power Plan allows states to meet the emissions reductions goals of the CPP by leveraging these existing
programs and the associated network of regional Renewable Energy Certificate (REC) tracking systems. In
the years prior to the CPP start date, states can earn compliance credits for renewable electricity generation
and some efficiency investments.

6We do not attempt to quantify benefits unrelated to avoided emissions such as learning-by-doing or
coalition-building. Moreover, we focus exclusively on CO2 emissions. Though there are non-CO2 avoided
emissions benefits, on a per MWh basis, CO2 accounts for a very large fraction of monetized emissions
damages using the median marginal damage values for SO2, NOx, and particulate matter reported in US
National Research Council (2010) and assuming marginal damages of $38/ton CO2(U.S. Interagency Working
Group on Social Cost of Carbon., 2014). Moreover, most harmful emissions of NOx and SO2 were subject
to an emissions cap over our study period.
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emissions displacement (on a per-MWh basis) does not vary significantly across resources

within most of the regions we analyze.

Second, we assess the economic significance of these external benefits estimates. We

construct a measure of marginal social value that captures the avoided operating costs (e.g.

fuel), capacity value, and the value of avoided CO2 emissions. Using a social cost of $38/ton

of CO2, emissions related benefits account for anywhere between one quarter and one half

of the estimated social value per MWh. Because emissions-related benefits tend to be neg-

atively correlated with privately captured returns on investment across regions, accounting

for external emissions benefits alters the rank-order of returns on investment across regions

(but not within technology). This underscores the importance designing policy incentives to

accurately capture regional variation in external, emissions-related benefits.

Third, we compare our estimates of emissions-related benefits against estimates of average

technology costs. The ratio of technology costs (net of avoided operating costs) and emissions

avoided can be approximately interpreted as a marginal abatement cost textitif the benefits

or costs omitted from our analysis are small. We document striking variation in these net

costs per ton of CO2 avoided. Utility-scale solar PV costs range from approximately $50 to

$120 per ton of CO2 avoided across the regions we consider. In contrast, wind energy costs

are in the range of $20-$60. Based on engineering estimates of energy savings associated with

lighting efficiency improvements, the energy efficiency investments we consider are associated

with negative abatement costs. 7

Finally, we compare our estimates with prevailing production or capacity-based policy

incentives (i.e. those conferred by renewable energy portfolio standards and federal tax

credits). As noted above, these RE and EE policies can generate benefits that are not

captured by our estimates of emissions displacement (inappropriable learning spillovers are

one example). Again assuming a social cost of carbon of $38/to), we subtract the monetized

estimate of avoided emissions from the corresponding production-based policy incentive.

This residual, plus any costs we have failed to account for, represents the value of other

uncompensated benefits that would rationalize the incentive levels we observe. These values

are as high as $450 per MWh for solar PV and up to $32 per MWh for wind.

This study contributes to a growing literature that investigates the near-term environ-

mental benefits accruing from incremental increases in renewable energy and alternative

technology investments (e.g. Cullen (2013), Kaffine et al. (2013), Graff Zivin et al. (2014),

7For any reader who wants to understand how these results vary with alternative assumptions, these calcu-
lations are presented in a manipulable spreadsheet. See http://nature.berkeley.edu/~fowlie/papers.

html.
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Novan (2015), Siler-Evans et al. (2012)). We extend this line of inquiry in three important

ways. First, we characterize the variation in estimated emissions-related benefits along spa-

tial, temporal, and technological dimensions. This analysis of variance is useful for informing

policy design trade offs between complexity (i.e. policy differentiation) and efficiency.8 Sec-

ond, we put the analysis of short-run benefits associated with emissions displacement, avoided

operating costs, and capacity value on the same empirical footing. This facilitates direct and

systematic comparison of emissions-related benefits vis a vis private cost savings and prevail-

ing policy incentives. Finally, the paper demonstrates a broadly applicable methodological

approach to estimating how incremental increases in RE and EE affect regional operating

costs and emissions using public data. The methodology has potential applications in both

policy design and commercial settings.9

These contributions notwithstanding, our analysis does not eschew some important lim-

itations common across all analyses of marginal emissions impacts. Our methodological

approach is not well-suited to evaluating long run impacts, nor should our estimates be used

to value returns on very large, non-incremental increases in RE and EE capacity.

The paper proceeds as follows. Section 2 provides a conceptual framework for the analysis.

Section 3 summarizes the data. Section 4 estimates marginal operating emissions rates

across time and space. Section 5 estimates marginal emissions displacement rates across

regions and technologies. Section 6 relates estimates of emissions displacement to a more

comprehensive measure of economic value. Section 7 estimates region and resource-specific

marginal abatement costs. Section 8 compares the level of carbon benefit we estimate against

direct subsidies technologies receive. Section 9 concludes.

2 Conceptual framework

The primary goal of this paper is to estimate the marginal returns on investments in re-

newable energy and energy efficiency over the short-run, and to summarize the variability

in these values along spatial, temporal, and technological dimensions. This is a short-run

8States are currently exploring the possibility of tracking emissions avoided from RE generation and EE
savings for the purpose of crediting emissions reductions under the proposed Clean Power Plan. If states
choose to file compliance plans separately, and then trade RE or EE credits for compliance purposes, it will
be important to ensure that the crediting protocol captures significant variation in emissions displacement
benefits.

9Technology startup WattTime.org has deployed software on select smart devices such as thermostats
and electric vehicles to automatically minimize the marginal indirect CO2 emissions rate of such equipment.
The software uses a real-time marginal estimation algorithm that is based on the methods presented in this
paper.
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analysis in that we condition on the existing infrastructure of regional electric power systems.

In this section we organize these steps within a simple conceptual framework.

2.1 Marginal operating emissions rate

We specify an emissions equation, EMr(yrt, xrt) which defines system-wide emissions in region

r as a function of factors we can observe. yrt denotes the total production from generators

that respond to marginal changes in production from RE, or changing demand levels, in

region r at time t. Other observable factors that affect system operating conditions, such

as weather, are captured by xrt. Differentiating with respect to yrt, we obtain an expression

for the marginal operating emissions rate (MOER):

φrt ≡
∂EMr(yrt, xrt)

∂yrt
(1)

This partial derivative captures the system-wide emissions associated with the last megawatt

produced by dispatchable units.

Figure 1 serves to illustrate how these marginal emissions rates can vary across hours

within a season (using winter in New York State as a case in point; we will apply this

framework across many regions in Section 4). Coal units, which are relatively more carbon

intensive, are more likely to be marginal during the evening hours when demand is low. In

contrast, less carbon intensive combined cycle gas plants are more often marginal during the

mid-day hours when demand is relatively high.10

2.2 Marginal emissions displacement rate

In a second step, We estimate the quantity of emissions displaced by a resource in a given

location r at a given hour t as the product of the hourly MOER and the technology’s

electricity production or savings in that hour.11

Our approach is predicated on two features that distinguish grid connected wind, solar,

and demand-side efficiency technologies from combustion-based generation resources. First,

wind, solar and energy efficiency savings are generally non-dispatchable. Second, because

10 To put these rates in perspective, using the U.S. Energy Information Administration estimates for prime
mover heat rates in 2012 and CO2 emissions by fuel type, coal plants emit roughly 2075 pounds of CO2 per
MWh (assuming bituminous coal), combined cycle gas turbines (CCGT) emit 892 pounds per MWh and
simple cycle gas turbines (SCGT) emit 1346 pounds per MWh.

11This neglects changes in transmission and distribution line losses.
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Figure 1: Seasonal marginal operating emissions rate profile (NYISO)

Notes: This figure illustrates hour-specific estimates of the marginal operating emissions rate in
New York during the winter season. Bars denote 95 percent confidence intervals. Our approach to
constructing point estimates and associated confidence intervals is explained in detail in Section 4.

the variable costs of wind, solar are negligible as compared to combustion generators, these

resources are typically deployed whenever they are available.12

Figure 2 plots average hourly resource availability for a representative wind site, a repre-

sentative solar PV installation, a generic residential lighting upgrade, and a generic commer-

cial lighting upgrade (all located in New York State). This figure summarizes electricity pro-

duction or savings during the winter season; realized resource availability or load reduction

in any given hour will fluctuate around these average hourly values. Taking Figures 1 and 2

together, one can see how the emissions-displacement benefits can vary across resources with

similar overall electricity production (or saving) potential, but different temporal profiles.

To facilitate direct comparisons of emissions displacement across resource profiles, we

define δrj to be the marginal emissions displacement rate (MEDR) specific to each technology

12Exceptions to this rule occur when transmission and minimum generation constraints prevent least cost
dispatch; these occurrences are relatively rare.
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Figure 2: Resource-specific production profiles

Notes: This figure plots the share of energy generated (or saved) on an average winter day in New
York by hour of day. See the data appendix for a discussion of data sources.
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j and region r over time horizon T :

δrj ≡ E

[
T∑
t=1

(
ωrjtφrt

)]
(2)

= T · E [ωrjt] · E [φrt] + T · cov(ωrj, φr) (3)

= φr + T · cov(φr, ωrj) (4)

The weights ωrjt represent the energy produced by a wind or solar resource (or saved by an

efficiency resource) in time interval t normalized by the total production (savings) from the

resource over the time horizon T .13 The E[·] denotes an expected, or average, value.

A key implication of Equation (4) is that the average quantity of emissions displaced

per MWh generated or saved by a resource is determined not only by the average MOER

in the region, φr, but also the correlation between the resource production profile and the

marginal operating emissions rate. Intuitively, a resource that is disproportionately dis-

placing electricity production at conventional generators during periods of time when the

marginal emissions rate is high will confer larger emissions-related benefits, all else equal.

This highlights the importance of capturing both regional and technological variation in

our analysis of emissions displacement benefits; we will explore these MEDRs in detail in

Section 5.

2.3 Marginal economic value

To put regional and technological variation in emissions displacement benefits into perspec-

tive, we introduce a measure of marginal benefit that accounts for both avoided environmen-

tal damages and impacts on power system operating costs.

E [MBrj] =E

[
T∑
t=1

(
τωrjtφrt

)]
+ E

[
T∑
t=1

(
ωrjtλrt

)]
+ CAPrj (5)

= τ(φr + Tcov(φr, ωrj))︸ ︷︷ ︸
Emissions displacement value

+λr + Tcov(λr, ωrj)︸ ︷︷ ︸
Avoided operating costs

+ CAPrj︸ ︷︷ ︸
Capacity value

(6)

The τ parameter captures the monetary value of the health and environmental damages

13For ease of exposition, we ignore variation in resource profiles for each technology within a region.
Below we show empirical support for the assumption that within-region variation is not a significant driver
of variation in resource value.
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avoided per unit of displaced emissions.14 The λ parameter represents the cost of the last

MWh produced by dispatchable units over a particular hour. If ωrj is positively (negatively)

correlated with the marginal cost of supplying load, this will positively (negatively) influence

the marginal economic value of the renewable or efficiency resource. As we will show in Sec-

tion 6, decomposing the short-run benefits in this way makes explicit the relative importance

of the value of external emissions displacement benefits relative to operating cost reductions.

The final term in the marginal benefit equation, CAPrj, denotes the capacity value gen-

erated by technology j in region r. All regional power systems need a certain amount of

generation capacity to reliably meet electricity demand, and as peak demand grows (due to

changing end-use patterns driven by economic growth or new technologies like air condition-

ing) new capacity needs to be built to maintain reliability. CAPrj is the cost that would

need to be incurred to build conventional generation capacity (e.g. a combustion turbine) in

the absence of the renewable or efficiency resource, levelized per MWh of energy produced

or avoided by the resource. We will discuss how this quantity is computed in Section 6.

2.4 Marginal abatement cost

In a final step, we combine our estimates of marginal returns on investment with estimates of

levelized investment costs. More precisely, we construct a measure of the net costs required

to avoid a ton of carbon emissions:

E [MACrj] =
LCOErj − (λr + Tcov(λr, ωrj) + CAPrj)

(φr + Tcov(φr, ωrj))
(7)

The numerator is the net cost per MWh: the levelized cost of electricity (LCOE) net of

avoided fuel costs and capacity value.15 Dividing this net cost by the quantity of emissions

displaced per MWh (in the denominator) yields a cost per ton of emissions avoided. If this

value exceeds the social cost of carbon emissions, the investment cannot be rationalized on

the basis of the carbon emissions externality alone. We will explore this measure in Section 7.

14Because the scale of CO2 emissions reductions is quite small relative to global emissions, we can safely
assume a constant marginal damage value.

15The LCOE is a common benchmarking tool used to assess the relative cost-effectiveness of different
energy technologies. Conceptually, it measures the constant (in real terms) price per unit of electricity
generated that would equate the net present value of revenue from the plant’s output with the net present
value of the cost of production.
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3 Data and empirical strategy

Empirical approaches to estimating the emissions impacts of specific grid-connected renew-

able energy resources vary in terms of the degree of complexity, data requirements, and

identification strategies. The approach we take is data intensive and broadly applicable. We

use hourly variation in production at grid-connected thermal power plants to proxy for the

effects of adding a new grid-connected renewable energy resource or efficiency improvements.

This allows us to estimate the marginal value of grid connected RE and EE resources even in

the absence of variation in RE production or changes in EE investments. Inferential statistics

are estimated using a block bootstrap.

Before we describe the data, we discuss two research design choices that have direct

implications for data construction and interpretation.

3.1 Marginal generating units

At the core of our analysis is the relationship between marginal changes in power system

operations and emissions. To implement this empirically, we estimate the relationship be-

tween hourly CO2 emissions in a regional power system and hourly electricity generation at

fossil-fueled power plants in the same region. This approach assumes that only fossil fuel

production will be affected by an increase in renewable output or energy efficiency. The

non-fossil fuel sources we exclude are primarily nuclear and reservoir-based hydroelectric;

run-of-river hydro and other non-hydro renewables comprise a much smaller share.

An alternative approach would regress aggregate hourly emissions on total electricity

demand. However, if production at non-fossil generators is correlated with changes in net

load, marginal emissions rate estimates will be biased. For example, reservoir hydro output

may be reduced in response to an increase in renewable output or energy efficiency (which,

in the extreme, would give the appearance of a MOER of zero). But a reduction in reservoir

hydro leaves water for later use.16 Because operators will seek to maximize the economic

value of a hydro facility, the additional stored water will likely be used at another time with

high marginal costs – i.e. when fossil generators are on the margin. Therefore reducing

hydro output at one point in time effectively reduces fossil output at a later time. As we will

16The circumstances would be different if the hydro operator is forced to spill additional water in this
scenario, but we assume this would only occur if thermal generator output cannot be further reduced.
Though this sort of spilling – and for that matter curtailment of other renewables – in the face of minimum
generation constraints from thermal generators is possible, it is currently sufficiently rare that we assume it
will not influence our analysis.
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see, because most of our MOERs vary relatively little over a day, this realloction of when

fossil generator output is displaced likely results in relatively small errors.

3.2 Regional unit of analysis

We group generating units in our analysis according to the Independent System Operator

that oversees their operation.17 ISOs were created to coordinate large-scale pooled electricity

markets. These system operators economically balance load in ISO regions with supply on

daily, hourly and sub-hourly time scales.18 ISOs also coordinate ancillary services – for

example frequency regulation and spinning reserves – to balance net load forecast errors on

a second-to-second basis, after all electricity markets have cleared.

An alternative approach would aggregate up to the North American Electric Reliability

Corporation (NERC) regions (See, for example, Siler-Evans et al. (2012); Graff Zivin et al.

(2014)). NERC regions are used for monitoring expansion plans and assessing historical

reliability performance. But these regions do not define the footprint of any single pooled

market or balancing authority. In recent work, Graff Zivin et al. (2014) regress emissions

within an entire interconnection (i.e. an aggregation of ISOs and utilities that interchange

power) on load in each sub-region of the interconnection. The advantage of this approach

is that it implicitly captures the flow of electricity between areas. A disadvantage, as noted

above, is that it captures changes in non-marginal, non-emitting generation that are corre-

lated with load. Moreover, load in neighboring regions tends to be highly collinear, which

further complicates the interpretation of the estimated coefficients.

On balance, we find the ISO regions provide a useful way to identify and aggregate

the generating units that would most likely respond to incremental RE and EE capacity

additions.19 Our approach is predicated on the assumption that the generators who would

respond to an incremental increase in RE or EE investments are located in the same region

17Benefits and costs are estimated separately for the six major independent system operators (ISOs) in
the United States: ISO New England (ISONE), the New York ISO (NYISO), the PJM Interconnection, the
Midcontinent Independent System Operator (MISO), the Electric Reliability Council of Texas (ERCOT) and
the California ISO (CAISO). Because the Sacramento Municipal Utility District and Los Angeles Department
of Water and Power are surrounded completely by CAISO, we include generators in those footprints in our
analysis; therefore we refer to the total region of analysis as California.

18On March 1, 2014 the Southwest Power Pool began coordinating daily, hourly and sub-hourly markets
via its Integrated Marketplace. At the time of writing this paper there was not yet sufficient historical data
to include this region in our analysis.

19In some cases NERC regions are larger than ISOs (CAISO is a very small part of the WECC NERC
region), and in other cases ISOs straddle multiple NERC regions (for example PJM straddles the MRO,
RFC and SERC NERC regions; MISO straddles the MRO and RFC NERC regions).
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as the RE or EE resource.

3.3 Data Sources

The data that support the analysis include hourly emissions and electricity generation at

fossil-fueled power plants; simulated hourly electricity production across thousands of wind

and solar sites; simulated hourly electricity savings from efficiency improvements in the

residential and commercial sector; wholesale electricity prices; and estimates of levelized

costs for renewable and energy efficiency resources. Except where otherwise noted, the

period of analysis is each hour of the period 2010-2012. In light of falling technology costs,

we use more recent cost data to construct our MAC estimates. Appendix A describes the

data sources and data set construction in detail. Here we provide a brief overview of the

data set components.

Hourly electricity production and emissions: We obtain hourly electricity genera-

tion and CO2 emissions for all plants that continuously monitor and report hourly CO2 mass

emissions, heat inputs, and steam and electricity outputs to the U.S. Environmental Protec-

tion Agency.20 We use plant latitude and longitude to locate the plants within ISOs using

a spatial database of the footprints of each ISO21. We exclude combined heat and power

units and co-generation because production these units would presumably be unaffected by

an increase in RE or EE capacity.

Marginal operating costs: We use real-time locational marginal prices (LMPs) as a

proxy for marginal fuel and operating costs. For most ISOs we use an unweighted spatial

average of each region’s hourly LMPs.

Wind production: We obtained simulated wind production data from the National Re-

newable Energy Laboratory’s (NREL) Eastern Wind dataset22 and Western Wind dataset23.

NREL and its partners produced these datasets with a combination of meso-scale wind speed

simulation models and the production characteristics of hypothetical wind farms. The re-

sulting simulated datasets cover more than 30,000 sites across the United States. The mete-

orological data used to calibrate the simulations cover the years 2004-2006. As we describe

below, we use a subset of these sites, and for each site we shift the dates forward by 6 years

20Under Part 75, Volume 40 of the Code of Federal Regulations.
21www.ventyx.com/en/solutions/business-operations/business-products/velocity-suite, last

accessed December 28, 2014.
22http://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html, last accessed De-

cember 28, 2014.
23http://www.nrel.gov/electricity/transmission/western_wind.html, last accessed December 28,

2014.
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(e.g. we mapped 2004 to 2010) to match the data with hourly electricity production and

emissions data.24

Solar production: NRELs PV WATTS simulation tool applies PV performance mod-

eling to typical meteorological year (TMY) weather data to estimate the hourly average

production of a solar array at any of thousands of different sites. We use this tool to sim-

ulate site-specific hourly output assuming a fixed PV array facing south, with a tilt angle

set equal to the sites latitude and PV WATTS default assumptions about system efficiency

and ground coverage ratio (see Appendix for details). Because solar production is strongly

spatially correlated on hourly time scales we use only one site per region, choosing the TMY3

with the highest production potential from within each region. These sites are listed in the

Appendix.

Energy efficiency savings: We focus exclusively on commercial and residential lighting

efficiency improvements because these measures are relatively insensitive to climate, which

allowed us to use the same consumption profiles in all regions. To estimate savings from

lighting efficiency, we began with residential and commercial lighting consumption profiles

with seasonal, weekly and diurnal patterns of consumption (Wei et al., 2012). We then

assumed lighting efficiency improvements would reduce consumption by the same percentage

in each of hour of these profiles, and normalized the hourly savings by total energy saved

per year.

Levelized cost of energy (LCOE): Table 1 summarizes the region and technology

specific LCOEs.

Levelized cost estimates for wind power are based on power purchase agreements (PPAs)

from a large sample of wind installations (Wiser et al., 2014). If we assume the wind industry

is competitive, the PPA prices plus the PTC are representative of total developer costs per

MWh, and we use this sum to approximate the total LCOE in each region.

Because the price of wind decreased rapidly over the study period, we use the latest avail-

able wind price data to generate results most pertinent to the current market environment.

For the Northeast, the latest available data are from 2012; for the other regions, PPA data

are from 2013. PPA prices are inclusive of energy, capacity and renewable energy certificate

(REC) payments. We assume wind developers also received the federal production tax credit

(PTC, $22/MWh).

24To the extent that wind speed is correlated with other covariates that also influence electricity demand
– for example temperature – this shift introduces some error into our analysis. Though these correlations
are important for determining wind capacity value and contribution to system peak, they are weak enough
that they will not significantly influence our results (Callaway, 2010).
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Table 1: LCOEs for all technologies and regions.

technology CAISO ERCOT ISONE MISO NYISO PJM
Utility scale solar $90.66 $91.60 $132.02 $106.6 $133.64 $138.57
Utility scale wind $80.52 $43.59 $75.11 $65.06 $75.11 $75.11
Residential lighting $26.93 $26.93 $26.93 $26.93 $26.93 $26.93
Commercial lighting $4.39 $4.39 $4.39 $4.39 $4.39 $4.39

Notes: This table lists the estimated levelized cost of energy for each of the four technologies
presented in this paper, in dollars per megawatt-hour. Residential and lighting estimates are
derived from a national analysis, do not vary by region and reflect the cost to use technology that
is incrementally better than code. See appendix for a description of the levelized cost of energy
approach.

Solar LCOE estimates are constructed using data summarized by Barbose et al. (2014).

We use the 2013 installed cost for >5MW utility scale systems ($2.97 per watt). These data

are reported prior to receipt of any direct financial incentives or tax credits. If we assume

the PV industry is competitive, these prices are representative of total social costs per MW.

Then, following (Baker et al., 2013), we assume that (i) the inverter is replaced every 10

years at a cost of $0.20/W but declining at 2% annually in real terms, (ii) a project life of

30 years, (iii) a panel degradation rate of 0.5% per year, and (iv) a real discount rate of 3%.

We computed LCOE for each site in our analysis; the resulting LCOEs are in Table 1.

Lighting costs are taken from the US Department of Energy Appliance and Equipment

Standard Programs 2011 General Service Fluorescent Lamps rulemaking technical support

document. For each appliance efficiency rulemaking under consideration, the DOE releases

a technical support document including either a Life Cycle Cost Assessment or a National

Impacts Analysis which provide estimates of the energy savings and costs associated with

different efficiency levels (EL) under consideration. For both residential and commercial

categories, we focused on general service fluorescent lamps (GSFL). DOE estimates that

there are more than 2 billion of these lamps in service in the US residential and commercial

sectors (Navigant Consulting, 2009). Lighting technologies and associated cost estimates are

discussed in detail in the appendix.

Capacity value: We measure capacity value in units of $/MW as CAPrj = CC × Pc

where CC is a “capacity credit,” (in MW per MW) and Pc is a payment for capacity ($/MW).

The capacity credit measures the fraction of a resource’s capacity that can be relied on for

delivery in high demand conditions. Following Milligan and Parsons (1999), we computed

capacity credit by averaging the hourly capacity factor for each resource in the top 30 percent
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of demand hours for each region.25 We obtained region-specific capacity prices from a variety

of sources (described in the Data Appendix). To convert capacity values to units of $/MWh,

we divided the annual $/MW numbers by the number of hours in 2010-2012 times the

capacity factor of the resource in question. For residential and lighting efficiency, we then

multiplied the capacity value by 1.06 to account for the disparity between MWh reduced at

the point of use and MWh reduced at the point of generation, due to transmission losses.

4 Marginal operating emissions rates

An important first step in the analysis involves estimating the effect of incremental changes

in RE production or EE savings on system-wide CO2 emissions. We do not observe RE

generation or EE savings directly. Instead, we note that incremental investments in RE or

EE reduce the quantity of electricity that must be generated by incumbent units on the

system to meet demand for energy end uses. To implement equation 1 empirically, we use

observable variation in production at grid-connected power plants to proxy for the effects of

adding a new grid-connected renewable energy resource or efficiency improvements.

The key challenge is to isolate the variation that most closely mimics the variation induced

by incremental increases in EE or RE capacity. If we compare system-wide emissions across

days with different load profiles, we capture not only the effects of relatively small differences

in net load (such as those associated with incremental EE and RE investments), but also

the effects of large inter-day differences in how the system is dispatched to meet different

load profiles. To isolate the variation that is most relevant to this analysis, we cluster days

within a region and season that share similar generation profiles.

We use variation across days with similar load profiles to estimate the φrt parameters

introduced in Section 2.1.26 More precisely, we use a k-means clustering algorithm to cluster

daily observations (within a region and season) over the period 2010-2012 into groups of days

with very similar load profiles and peak loads. This algorithm, which is explained in more

detail in Appendix A.2, gives rise to clusters of days within each season and region denoted

by k.

25Because hourly demand in CAISO is easy to obtain, we used this in place of hourly load for all of
California.

26This marginal analysis ignores the intermittency effects of wind on unit commitment. These effects have
been demonstrated for large, non-incremental increases in wind penetration. (Dorsey-Palmateer, 2014)
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We estimate the following equation:

Erkt = αrkhs + φrkhsGrkt + erkt, (8)

where Erkt and Grkt measure emissions and electricity production, respectively, at dispatch-

able fossil-fueled sources in region r and hour t within cluster k.

The α parameter captures the average emissions level observed in region r, season s, hour

h, and load profile type k. Differencing out these average values helps to control for the effect

of systematic differences in system operating conditions across regions, hours, or seasons that

would likely persist with or without an incremental increase in RE or EE investment.

We are primarily interested in the φ coefficients which are estimated separately by region

and by hour of day to capture systematic variation in marginal operating conditions. To

capture seasonal variation in MOERs, these region-hour-specific coefficients are estimated

separately for summer and winter seasons (denoted s).27 The φ coefficient values are also

allowed to vary across the k clusters to reflect differences in underlying operating conditions

that would prevail with or without RE and EE capacity changes.28

One potential concern with the region-hour-cluster-season fixed effects is that they absorb

too much of the variation in net generation, meaning that our estimates capture the emissions

implications of only very small changes. To investigate this concern, we examine how much

variation in net generation remains once we difference out these region-by-hour-by-cluster-

by-season averages. The standard deviation of the residual variation in hourly net generation

that is not absorbed by these fixed effects ranges from 1500 MW (New York) to over 9000

MW (ERCOT). To put these numbers into perspective, hourly utility-scale solar and wind

generation averaged 348 MW (New York) and 3,732 MW (ERCOT) in 2012. In other words,

the variation in generation that we use to identify the φ coefficients is the same order of

magnitude (and generally greater than) the RE generation we are interested in evaluating.

Throughout the analysis, inferential statistics (such as confidence intervals) are estimated

using a block bootstrap. For each each region and season, we select (with replacement)

a set of 1000 days which preserves the observed composition of week days and week-end

27We define our seasons to match the seasonal NOx emissions regulations which switch on in May and
switch off in October and which affect the marginal operating costs of fossil-fueled generating units.

28The variation we use to estimate the φ coefficients captures both variation in real-time market responses
and variation in day-ahead dispatch decisions across days with similar load profiles. It is beyond the scope of
our analysis to separate the effects of variation in forecast demand and variation in departures from forecast
on system-wide emissions. An incremental increase in RE or EE would presumably affect emissions through
both channels.
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Figure 3: Seasonal marginal operating emissions rates

Notes: This figure illustrates the range of hour-specific estimates of the marginal operating emissions
rate by season and cluster. The top and bottom of each box represent the upper and lower quartile
values, respectively. Whiskers denote 1.5 times the interquartile range beyond the 25th and 75th
percentile values. Resource profiles for lighting efficiency improvements capture generic seasonal and
hourly variation in energy savings. Solar and wind profiles vary within and across days according
to simulated meteorological conditions and are site specific. Subsets of sites from each region are
used to estimate regional MOERs.

days within that region-season over the study period (2010-2012). We keep 24 hour blocks

within each day together because electricity grid operations are optimized day-ahead for the

following day.

4.1 Estimation results

With six regions, twenty-four hours, two seasons, and an average of three clusters per region

and season, the empirical strategy summarized above yields more than 800 MOER point

estimates for each bootstrap repetition. The full set of estimates are reported in the appendix

along with bootstrapped confidence intervals.

Figure 3 summarizes the range of variation in these MOER point estimates by region,

season, and cluster. Within a region and season, clusters are displayed in increasing order of

electricity generation. The patterns of variation, both across and within regions, are intuitive

when one considers the generation mix in each. California’s electricity sector is dominated
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by natural gas. Variation in emissions rates is therefore driven primarily by variation in

heat rates, with more fuel efficient plants preceding less efficient plants in the merit order.

Consequently, we see MOER estimates increasing with generation levels in both the summer

and winter. In contrast, MOER estimates are decreasing with generation levels in regions

where coal units typically precede cleaner gas units in the merit order. In the case of NYISO,

we see a very large range of MOERs in winter, reflecting the diurnal variability in our early

example from Fig. 1.

Column (1) in Table 2 summarizes the MOERs by region, averaged across hours in

our study period (2010-2012). The numbers in parentheses summarize the variation in our

estimates (i.e. 95 percent confidence intervals) of these regional average values. California’s

average MOER is lowest, near that of a combined cycle gas plant. MISO has the highest

average MOER, just below that of an average coal plant (see footnote 10). All other regions

lie between the emissions rate for combined cycle gas and coal, suggesting that coal, simple

cycle gas and combined cycle gas are marginal in different conditions in these regions.

Table 2: Weighted average MOERs and emissions intensities for each region.

Region
MOER, weighted

average (lb/MWh)
Emissions intensity

(lb/MWh)
(1) (2)

California 896 592
(870 - 922)

ERCOT 1378 980
(1305 - 1452)

ISONE 1262 605
(1179 - 1346)

MISO 1870 1669
(1798 - 1942)

NYISO 1312 476
(1230 - 1397)

PJM 1776 1077
(1706 - 1849)

Notes: Regional MOER values are weighted averages of cluster-specific MOERs, where the weighting is
by the number of days in each cluster. MOER values in parenthesis represent the 95 percent confidence
interval from the bootstrap results. Emissions intensity is regional CO2 emissions divided by total regional
generation; see Appendix for explanation of data sources.
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As a point of comparison, the second column of Table 2 reports the average overall

emissions intensity (i.e. the regional sum of CO2 emissions across 2010-2012, divided by

total generation within each region over 2010-2012). In all cases the emissions intensities

lie below the MOERs, indicating that non-marginal generation is on average cleaner than

marginal. In California, ISONE and NYSIO the intensities lie below natural gas, suggesting

that hydro power, nuclear and existing renewables play an important part of the fuel mix.

In the remaining regions intensities are at or above combined cycle gas.

5 Average Emissions Displacement Rates

In this section, we estimate the region and technology specific emissions displacement rates

(δrj) defined in Equation (4). We estimate these values empirically as:

δrj =

∑T
t=1

(
φ̂rkhs · qrjt

)
∑T

t=1 qrjt
. (9)

For each hour in our three year study period (indexed by t), we multiply the quantity

of simulated renewable energy production (or energy demand reductions in the case of effi-

ciency) qrjt with the corresponding regional MOER estimate. The numerator in Equation

9 is thus the estimate of the avoided CO2 over the study period. Dividing by the sum of

energy produced (or saved) yields an estimate of the average quantity of emissions avoided

per MWh. 29 For each region-technology pairing, confidence intervals are estimated using

the block bootstrap described above.

5.1 Estimation results

Figure 4 summarizes the total variation in MEDRs that arises from variation in regional

average MOERs (captured by φr in Eq. (4)) and correlation between MOER profiles and

resource profiles (captured by T · cov(φr, ωrj) in Eq (4)).30 Consistent with results presented

29During the time period of our study, a subset of states participated in the Regional Greenhouse Gas
Initiative (RGGI) which imposes a cap on greenhouse gas emissions in the electricity sector. At the end
of the first phase, which ran 2009-2012, emissions were well below the cap and many permits went unused.
For most of the period we study, the permit price was very close (or at) the reserve price. We take this as
evidence that the cap was not binding. Thus, any RE or EE investments in these regions during our study
period would displace (versus reallocate) emissions.

30Because bootstrapping the full suite of results is a computationally intensive process, we only present
results for a representative set of sites. In the case of wind, Figure 4 summarizes the results of 20,000
bootstrap repetitions (20 sites × 1,000 repetitions each) in each region. We use only one time series for all
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Figure 4: Marginal emissions displacement rates

Notes: This figure illustrates the range of resource-specific marginal emissions displacement rates
estimated by region. The top and bottom of each box represent the upper and lower quartile values,
respectively. Whiskers denote 1.5 times the interquartile range beyond the 25th and 75th percentile
values. Resource profiles for lighting efficiency improvements capture generic seasonal and hourly
variation in energy savings. Solar and wind profiles vary within and across days according to
simulated meteorological conditions and are site-specific. Subsets of sites from each region are used
to estimate regional MEDRs.

in the previous section, the Figure reveals substantial variation – nearly a factor of two –

in MEDRs across regions. Within some regions, we find very limited variation in MEDRs

across technology variation (suggesting a small cov(φr, ωrj) from Eq. (4)). In other regions,

we find more significant variation across technologies (implying larger cov(φr, ωrj)).

Figure 4 is generated using simulated data from representative sites in each region.

Whereas we observe limited intra-regional variation in solar PV generation or efficiency

savings, spatial variation in elevation, topography, and vegetation can generate significant

variation in wind patterns across relatively short distances. To assess the importance of

intra-regional variation in emissions displacement across wind sites, we generate MEDR

point estimates for all wind sites in the data. Results, summarized in Appendix A.4.1, in-

dicate that within-region and within-technology variation in MEDRs is small (bootstrapped

differences in MEDRs across extreme sites is 1 to 4 percent). For this reason, we focus on

other technologies. We discuss within region, within technology variation in more detail below.
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variation across regions and technologies, but not within regions for a given technology.

5.2 Analysis of variance in emissions displacement rates

In principle, a policy designed to support socially efficient levels of investment in RE and

EE should provide incentives that accurately reflect the variation in external emissions ben-

efits summarized by Figure 4 . Absent other market failures or distortions, a carbon tax or

emissions trading program that establishes an emissions price equal to the marginal damage

caused could achieve this objective. In practice, production-based policy incentives (such

as those conferred via renewable portfolio standards, efficiency portfolio standards, and pro-

duction tax credits) have been far more commonplace. This raises the question: how should

production-based incentives be differentiated to reflect differences in emissions-related ben-

efits?

We investigate the extent to which production-based incentives that are regionally dif-

ferentiated could capture variation in emissions displacement benefits. Let φryb denote the

average MOER for region r in year y and bootstrap repetition b. We find that 97 percent of

the variation in the simulated annual emissions displacement rates, δrjyb, can be explained

by variation in the corresponding average φryb.
31 In other words, regional average MOERs

serve as a reasonably good proxy for the average quantity of emissions displaced per MWh

generated or saved.

Recall from Equation (4) that the quantity of emissions displaced per MWh by an RE

or EE resource can depart systematically from the regional average MOER if the electricity

generation or savings profile is positively or negatively correlated with the MOER profile.

To investigate these systematic deviations empirically, we estimate the following:

δrjyb = φryb +
∑
rj

∆rjbdrj + erjyb. (10)

where drj is a dummy variable for region r and technology j and φryb is the year- and region-

specific weighted average MOER for each bootstrap repetition (taken directly from data,

31We computed R-squared for each bootstrap repetition as R2
b = cov(δb,sb)

2

var(δb)var(sb)
, where δb is a vector of

MEDRs, and sb is a vector of proxy regional emissions measures, each vector containing values for all years,
technologies and regions within a bootstrap repetition (N = (number of regions) × (number of years) ×
(number of technologies) = 6×3×4 = 72). When a similar calculation is done replacing the average MOER
with the the average emissions from all generators in the region, this R-squared drops to 0.83. This suggests
that the regional average MOERs serve as a good proxy for emissions displacement rates. It also underscores
the importance of using a measure of marginal - versus average- emissions intensity to measure emissions
displacement benefits.
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not estimated in the regression). The ∆rjb capture the extent to which the regional average

MOER measures over or under-estimate actual emissions benefits associated with technology

j in region r on average. The results of this regression, reported in Table 3, are consistent

with the variation across technologies in Fig. 4.

Deviations from the regional average are relatively small on average in regions like Cali-

fornia and MISO where MOER profiles are quite flat. In other regions where MOER profiles

are more variable, this regional proxy departs from our estimate of average emissions dis-

placement benefits by a significant margin. The most significant example is NYISO, where

the average MOER overestimates emissions displaced by solar PV by roughly 190 lbs/MWh

(a 14 percent increase) and underestimates emissions displaced by residential lighting by

approximately 38 lbs/MWh (a 3 percent decrease).

Table 3: Estimated differences between MOER and technology-specific MEDR (lb/MWh).

Technology California ERCOT ISONE MISO NYISO PJM

ComLight 14.0 -30.2 14.2 -19.2 -90.8 -10.3
(7.8) (12.2) (11.4) (16.2) (13.4) (16.2)

PV 39.9 -86.6 42.4 -24.4 -190.2 -33.0
(9.2) (15.1) (15.8) (23.9) (23.4) (21.8)

ResLight 2.2 -22.9 15.3 -16.7 37.7 0.5
(3.3) (5.9) (5.8) (6.4) (12.3) (5.8)

Wind 3.3 11.2 -3.5 -13.0 0.3 4.5
(20.2) (27.6) (21.2) (31.4) (22.4) (28.4)

Notes: The table reports results from regressing bootstrapped marginal emissions displacement on regional
average marginal operating emissions rates and technology-region fixed effects. The MEDR for residential
and lighting efficiency does not include an adjustment for line losses. Positive values indicate the MOER
underestimates the MEDR. Bootstrapped standard errors in parentheses.

In summary, we find that the regional average MOER serves as a reasonable proxy for

the average quantity of CO2 emissions displaced by RE and EE resources in most regions

over the time period we study. In some regions, such as New York, the MOER and technol-

ogy production profiles exhibit enough correlation that the regional MOER deviates more

noticeably from emissions displacement.

23



6 Marginal Economic Value

We have documented statistically significant regional variation in marginal emissions dis-

placement rates among both RE and EE technologies. In this section, we begin to explore

the economic implications of this variation. More specifically, we assess how differences in

emissions displacement drive differences in a more comprehensive measure of marginal value.

We use a monetary measure of marginal economic benefits, summarized by Equation (6),

that includes both the value of avoided emissions (external to market transactions), operating

costs (e.g. fuel costs) associated with generation displaced marginal units, and capacity value.

We construct this measure as follows:

MBrj = τ · δrj +

∑T
t=1 (λrjt · qrjt)∑T

t=1 (qrjt)
+ CAPrj. (11)

The first term on the right hand side multiplies our estimate of emissions displaced per

MWh by the social cost of carbon denoted τ . We assume a value of $38 per ton CO2 (in 2011

dollars).32 As noted above, the emissions cap imposed by RGGI during our study period was

not binding, and permits cannot be banked for use in subsequent phases. For this reason,

we assume that emissions displaced by RE or EE during this period were in fact avoided.33

To estimate the second term on the right hand side of Equation 11, we need regional

and hourly measures of the variable operating costs at marginal dispatchable generating

units (λrjt). We use real-time locational marginal prices (LMPs) as a proxy. These prices

reflect the marginal cost of supplying (at least cost) the next increment of electricity to a

particular location given the supply and demand bids submitted by market participants and

the physical constraints on the system.34 Capacity values are estimated separately for each

region and technology.

32This is approximately equal to the value associated with a 3 percent discount rate in: U.S. Interagency
Working Group on Social Cost of Carbon. 2013. Technical Support Document: Technical Update of the So-
cial Cost of Carbon for Regulatory Impact Analysis under Executive Order 12866. http://www.whitehouse.
gov/sites/default/files/omb/inforeg/social_cost_of_carbon_for_ria_2013_update.pdf, last ac-
cessed December 20, 2014.

33California’s cap and trade program expanded to the electric power sector in 2013, the year after our
data end.

34In all regions but ISONE we use the unweighted spatial average of each region’s hourly LMPs; in ISONE
we use the Internal Hub real-time LMP.
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6.1 Avoided operating costs

Our approach to estimating the value of avoided operating costs parallels our approach to

estimating avoided emissions. In each hour we multiply the megawatt-hours of simulated

renewable energy production (or energy demand reductions from efficiency improvements)

with the corresponding regional LMP value. Aggregating these avoided costs across all

hours and dividing by the sum of energy produced (or saved) yields a region and technology-

specific estimate of the average marginal value per MWh. For each region-technology pair,

we estimate confidence intervals using the block bootstrap described above.

Figure 5 summarizes region and technology-specific estimates of avoided operating costs

per MWh. Variation within a region and across technologies is driven by differences in the

temporal correlation between resource profiles and marginal operating costs. For example,

solar PV, which tends to be correlated with peak demand (and by extension higher LMPs),

produces the highest operating cost savings. In contrast wind production, which is slightly

negatively correlated with demand, generally has the lowest savings.

Cross-region comparisons of these λrjt should be made carefully. Differences in marginal

prices across regions can reflect, among other factors, differences in market structure and

associated incentives that govern the bidding behavior of the market. In our context, there

are two institutional considerations that warrant particular consideration.

The first pertains to regional differences in resource adequacy and procurement. Figure

5 shows that estimates of avoided operating costs are relatively more volatile in ERCOT. In

contrast to other regions, ERCOT did not have a direct mechanism to procure generation

capacity; all generator revenue comes from transactions for energy. In other words, ERCOT

prices capture the cost to build new generation capacity in addition to fuel costs. As a

consequence, energy prices in ERCOT are allowed to rise to very high levels to reflect scarcity

of generation and incentivize construction of new capacity. In the other regions, load serving

entities are required to contract with generators solely on the basis of their existing capacity

before any energy is transacted. These transactions are intended to ensure that sufficient

generation capacity is built (or kept operating) to maintain system reliability. The resulting

payments to owners of generation form part of their total revenue, meaning they only need

to capture a portion of their revenue in energy markets to be profitable. MEV comparisons

between ERCOT and other ISOs should made in this context.

A second consideration pertains to regional differences in emissions regulations. New

York, New England, and some states in the PJM participate in the Regional Greenhouse

Gas Initiative (RGGI). During our study period, electricity producers under RGGI had to
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Figure 5: Avoided operating costs per MWh by technology type and region.

Notes: This figure illustrates the range of cost-related benefits (i.e. operating costs avoided per
MWh generated or saved) across regions and technologies. The top and bottom of each box repre-
sent the upper and lower quartile values, respectively. Whiskers denote 1.5 times the interquartile
range beyond the 25th and 75th percentile values. Resource profiles for lighting efficiency improve-
ments capture generic seasonal and hourly variation in energy savings. Solar and wind profiles vary
within and across days according to simulated meteorological conditions and are site specific.

offset emissions with permits. In states subject to RGGI, marginal operating costs - and

wholesale electricity prices- reflect the cost of complying with the program. This compliance

cost includes both the marginal cost of any abatement activities (a true cost) and the cost

of purchasing permits to offset emissions (a transfer). Because the permit price was so low

during our study period, the extent to which we over-estimate avoided costs by including

the transfer of permit value will be minimal.

6.2 Capacity value

We compute region and technology-specific capacity credits by averaging the hourly capacity

factor for each resource in the top 30 percent of demand hours for each region.35 Table 4

reports these capacity credits as well as capacity factors.

35Because hourly demand in CAISO is easy to obtain, we used this in place of hourly load for all of
California.
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Table 4: Capacity credits and capacity factors by technology and region.

Wind Solar ResLight CommLight
cap.

credit
cap.

factor
cap.

credit
cap.

factor
cap.

credit
cap.

factor
cap.

credit
cap.

factor
California 0.225 0.217 0.269 0.207 0.114 0.090 0.445 0.392
ERCOT 0.261 0.347 0.260 0.205 0.099 0.090 0.406 0.392
ISONE 0.394 0.385 0.206 0.142 0.108 0.090 0.462 0.392
MISO 0.289 0.327 0.238 0.176 0.105 0.090 0.439 0.392
NYISO 0.350 0.361 0.207 0.140 0.106 0.090 0.453 0.392
PJM 0.361 0.362 0.192 0.135 0.108 0.090 0.447 0.392

Notes: This table lists estimated capacity credits and capacity factors by region.

Table 5: Capacity prices ($/MW-year) for each region.

California ERCOT ISONE MISO NYISO PJM
$26,400 $- $48,600 $39,015 $12,617 $36,591

Notes: This table lists estimated capacity prices in by region in dollars per megawatt.

We obtained capacity prices from a variety of sources (See Appendix). These data are

summarized in Table 5. To convert the capacity values to units of $/MWh, we divided the

annual $/MW numbers by the number of hours in 2010-2012 times the capacity factor of

the resource in question.

6.3 The marginal value of RE and EE resources

Figure 6 summarizes the point estimates of marginal economic value in terms of emissions

displacement benefits (red), the value of avoided operating cost components (blue), and the

capacity value (green) by region and technology. Numerical point estimates are reported in

Table 11 of the Appendix.

An overarching implication of Figure 6 is that external emissions displacement value

comprise an economically significant component of marginal social value. In California,

the region with the lowest marginal emissions because natural gas is typically on the mar-

gin there, emissions displacement benefits nevertheless comprise approximately a third of

marginal social value. In MISO, point estimates of the emissions displacement value exceeds

the estimated value of avoided variable operating costs for all technologies except solar PV.

Overall, external benefits associated with avoided emissions are somewhat negatively

27



Figure 6: Marginal social value by technology type and region.

Notes: This figure summarizes point estimates of operating costs (in blue), emissions (in red;
measured in monetary terms), and capacity value (in green) displaced per MWh of renewable
energy generated or demand-side electricity saved.

correlated with privately captured benefits. Looking across regions, this is because regions

with more coal on the margin are generally associated with lower marginal operating costs,

but higher marginal emissions intensities. For example, private returns per MWh are highest

in ISONE and lower in ERCOT and MISO (see Figure 6). Once avoided emissions are

accounted for, estimates of marginal value in MISO are comparable to those in ISONE.36

7 Marginal abatement cost

The analysis thus far has focused exclusively on the benefits generated by RE and EE

resources. In this section, we incorporate the cost side of the equation. We compute region-

36These values are also negatively correlated across time. For example, whereas solar PV ranks last with
respect to emissions displacement value in MISO, ERCOT, and PJM, it ranks first in terms of total social
value per MWh due to the operating costs displaced during peak hours.
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and technology-specific measures of the net cost per ton of CO2 displaced:

MACrj =
LCOErj −

∑T
t=1 (λrtωrjt) − CAPrj

δrj
(12)

The LCOErj refers to the levelized cost of energy introduced in Section 3. As described

in Appendix A.1, wind LCOEs are built from records of region-specific power purchase

agreements and solar LCOEs are built from historical installed costs ($/watt) combined

with region-specific solar resource potential. Lighting efficiency costs are based on DOE’s

engineering-economic forecasts of the retail price of and costs to install new technologies,

projected power consumption, and projected utilization rates (hours of operation per year).

Figure 7: Marginal abatement costs across technologies and regions

Notes: This figure plots the total marginal abatement cost, in dollars per ton of carbon dioxide,
from different region-technology combinations. Regions are ordered from highest to lowest marginal
abatement cost for PV.
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Figure 7 summarizes the estimated net cost per ton of CO2 avoided.37 The data and

assumptions used to construct the LCOE estimates and the associated marginal abatement

costs in Figure 7 are documented in an interactive spreadsheet.38 Interested readers can used

this tool to investigate how this table varies under alternative assumptions.

The figure shows striking variation in estimated abatement costs across technologies.

Owing to its relatively high installed technology cost, solar PV is associated with the highest

cost per ton of CO2 across all regions.39 Using the average PPA prices we observe, wind

resources are not yet cost effective (on average) from a private perspective. Importantly, in

several of the regions we consider, our point estimates of abatement costs are in the range

of values typically used to approximate the social cost of carbon.

Turning to the investments in lighting efficiency, marginal abatement cost estimates are

negative. One interpretation of negative MAC is that lighting efficiency standards should be

more stringent in order to equate marginal costs with marginal social returns. However it is

important to note that these estimates are predicated upon engineering estimates of energy

savings – which are based on a specific utilization rate of the technology – and technology

costs.40 In Appendix A.6 we reproduce Fig. 7 cutting the assumed utilization rates in

half. Using these more conservative assumptions, commercial lighting remains strongly cost

effective (negative MAC). However residential lighting MAC values cease to be negative in

regions other than ISONE, though they remain below the social cost of carbon.

Although technology rankings are consistent across regions, regional rankings vary within

technologies. For solar PV, MAC estimates are higher in New York and New England where

the solar resource is low relative to sunnier regions like ERCOT. Somewhat surprisingly,

MISO has the lowest solar PV abatement costs; this is driven by both high MEDRs and an

excellent solar resource on the western side of the ISO. Furthermore PV in California does

not rank as well as NYISO; though its solar resource is excellent, the MEDRs we estimated

37Although our bootstrap approach captures the variability from marginal operating emissions rates and
wind, solar and lighting profiles, we cannot fully characterize the remaining sources of uncertainty in the
MAC calculations, especially with respect to the LCOE. The latter uncertainty may well dominate any
uncertainty we are able to capture. Therefore we present our results as point estimates only, with strong
caveats on interpreting small differences in MAC values.

38http://nature.berkeley.edu/~fowlie/papers.html
39It is worth noting that recent estimates of signed, but not completed, utility scale solar PPAs suggest

that the cost of utility scale solar is falling, in some cases to that of wind or even lower Bolinger and Weaver
(2014).

40We are using a 3% discount rate to calculate the LCOE, reflecting our focus on total social costs rather
than private consumer costs. A higher discount rate would be more realistic for private decisions and would
push residential lighting to have positive cost in some regions. For example, a 7 percent discount rate would
raise the LCOE by roughly 20 percent.
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there are low. The ranking of regions changes modestly for wind. In particular, due to

historically high PPA prices there, California overtakes New York as the highest cost region.

Variation in negative cost estimates (i.e. lighting estimates) is driven predominantly

by regional variation in the MEDR, with lower MEDR regions having more negative MAC

values. This result is mathematically intuitive – smaller emissions reductions in the denom-

inator results in a larger (in absolute value) fraction. In other words, relatively few tons of

CO2 are avoided for each unit of electricity saved.

8 Policy context

In theory, subsidies paid to RE and EE should reflect the value of external, uncompensated

benefits generated over the life of the project. Our analysis does not attempt to capture

all of the external benefits that renewable energy investments might generate. As noted

above, advocates of existing RE and EE policies cite additional benefits that we do not

attempt to quantify, such as economic development opportunities, health benefits unrelated

to climate change, and learning by doing. There are also costs, such as the costs of dealing

with increased ramping and cycling requirements, that we do not account for. These omitted

factors notwithstanding, it is instructive to examine the extent to which the policy incentives

that prevailed during our study period can be rationalized by the carbon emissions benefits

we estimate.

8.1 Interpreting MEDRs in context of state- and federal subsidies

With respect to RE policy incentives, the states in our analysis fall into two categories. The

first includes states that have renewable portfolio standards (RPS) with supporting markets

for renewable energy certificates (RECs). In these states, we can compute the total subsidy

to wind and solar producers as the combination of federal tax credits and renewable energy

certificates 41 A second category includes states where compliance with an RPS is achieved

via bilateral contracts between load serving entities and renewable generation. In these

states, additional costs incurred to procure renewables are less transparent, and therefore we

do not include them here.

Table 6 summarizes the production based subsidies that prevailed in 2010-2012 for states

falling into the first category. Column (4) reports the total subsidy per MWh generated (i.e.

41see Appendix A.1 for a description of the sources of the REC data and a discussion of how the investment
tax credit was converted to a $/MWh metric.
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REC price plus tax credit) for solar PV and wind technologies, respectively. Column (5)

divides the region and technology specific production subsidy (measured in $/MWh) by our

estimate of the corresponding MEDR (i.e. the quantity of carbon emissions displaced per

MWh). If we assume that RE generation receives these subsidy payments (in real terms)

over the life of the project, and we ignore (for now) the costs and benefits that our analysis

does not capture, we can interpret the values in Column (5) as the subsidy paid per ton

of CO2 abated. Because solar REC prices are significantly higher than wind REC prices,

and because the ITC gives solar a larger levelized subsidy than the PTC does for wind, the

implied carbon cost is much larger for solar than it is for wind.42

As noted earlier, our analysis captures only one dimension of the external benefits gen-

erated by these policies – emissions reductions. Other possible external benefits, such as

uncompensated health co-benefits and learning, tend to be harder to quantify. The final

column of the table provides a measure of how large these additional external benefits would

have to be – after subtracting a $38/ton social cost of carbon – to justify the federal- and

state-level policy incentives we observe.43 One can interpret this residual as the energy-

levelized value of all external benefits that would need to accrue from the production of each

kWh to rationalize the policy incentive.

The variation in these residual external benefit estimates is striking. For all solar loca-

tions, these values exceeds the current installed cost of utility-scale solar (roughly $3,000/kW).
44 Wind’s valuation is lower on account of lower installed cost and higher capacity factors.

Indeed in some states we see negative non-carbon valuation, implying the estimated carbon

benefits exceed the total subsidy amount. If we assume that any external costs we have

neglected to account for are small, these results imply that wind resource development in

these regions is a socially cost effective investment even absent emissions-unrelated external

42In the case of solar PV, our estimates of the implied cost of carbon in Table 6 significantly exceed our
MAC estimates reported in Figure 7. There are a couple of potential explanations for this . First, under
regulatory uncertainty, investors may demand higher payments per unit of generation to compensate for the
risk that the RPS will be dismantled during the life of the project. Second, we use national estimates for
the costs of utility scale solar in our analysis; these costs may be significantly higher in some regions of the
country.

43We computed this measure as (S−CCO2
×MEDR)× (annual production)× (annuity factor), where S is

the total subsidy per MWh and CCO2 is the cost of carbon. We set CCO2 =$38/ton. Annual production for
solar is based on a 14.2 percent capacity factor in ISONE and 13.5 percent capacity factor in PJM (taken
from the NREL data described in the Appendix). For simplicity we used a 40 percent wind capacity factor
in all regions. This analysis assumes that

44Variation across states suggests a range of political support of renewable energy policy. There is one
interesting case of variation within a state, in the case of solar in Ohio. Ohio’s non-carbon valuation of solar
capacity built within the state is nearly double that of solar built anywhere – this could be a result of the
presence of a major solar manufacturer in state (FirstSolar, founded in Toledo).
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benefits.

Table 6 shows that regional variation in subsidy levels is poorly – if not negatively –

correlated with external benefits generated on a per MWh basis. This has implications for

allocative efficiency if prevailing policy incentives are failing to direct RE investments to

locations where external net benefits are largest.

8.2 Interpreting MEDRs in context of regional cap-and-trade pro-

grams

With respect to both EE and RE, overlapping policies are commonplace. Within a given

state or region, there are typically multiple policies in place to offer concurrent support for

RE and EE resources. The current practice of deploying regional emissions trading programs

alongside renewable and/or efficiency portfolio standards is likely to continue under the Clean

Power Plan as states look to leverage and augment their existing programs and policies for

compliance purposes.

During the time period we study, ten Northeastern states imposed a non-binding cap

on CO2 emissions in the electricity sector. All ten states had also imposed an RPS. The

marginal cost of complying with the emissions trading program was less than $2 per ton

of CO2 over the time period we consider (2010-2012). In contrast, we estimate marginal

abatement costs for solar that exceed $110/ton CO2 in the RGGI region. These costs are

closer to $40/ton CO2 for wind. In other words, marginal abatement costs in the RGGI

region were not set equal across RPS and cap-and-trade policies during the time period we

study. External benefits unique to RE, and separate from avoided carbon emissions, would

need to be substantive in order to rationalize the differences in marginal abatement costs

across the emissions trading and RPS policies, respectively.

9 Conclusion

Increasing levels of investment in renewable energy and energy efficiency resources lie at the

heart of most climate change mitigation strategies. Policy incentives have been – and will

continue to be – a driving force behind this increased investment. In principle, these policy

incentives should accurately reflect external, uncompensated costs and benefits in order to

efficiently allocate investment across technologies and across regions.

This paper estimates the impacts of increased deployment of grid-connected renewable
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Table 6: Comparison between emissions displacement and subsidy levels.

Location Region
MEDR,
(lbs/MWh)

REC
price,

($/MWh)

PTC or
ITC

($/MWh)

total
subsidy
($/MWh)

subsidy
paid per
ton of
CO2,

($/ton)

susbsidy
for non-
carbon
benefits
($/MWh)

(1) (2) (3) (4) (5) (6)

Solar
Massachusetts ISONE 1295 $433 $37.70 $470 $726 $446
Delaware PJM 1746 $154 $39.57 $194 $222 $160
Maryland PJM 1746 $260 $39.57 $300 $344 $267
New Jersey PJM 1746 $386 $39.57 $426 $488 $393
Ohio PJM 1746 $157 $39.57 $196 $225 $163
Ohio (in
state)

PJM 1746 $255 $39.57 $295 $338 $262

Pennsylvania PJM 1746 $147 $39.57 $186 $213 $153
Wash., DC PJM 1746 $218 $39.57 $257 $294 $224

Wind
Texas ERCOT 1400 $1.58 $22 $23.58 $33.69 $(3.85)
Connecticut ISONE 1248 $27.68 $22 $49.68 $79.62 $25.97
Maine ISONE 1248 $21.60 $22 $43.60 $69.87 $19.88
Massachusetts ISONE 1248 $32.32 $22 $54.32 $87.05 $30.61
New Hampsh. ISONE 1248 $32.39 $22 $54.39 $87.16 $30.68
Rhode Island ISONE 1248 $33.55 $22 $55.55 $89.02 $31.84
Illinois MISO 1878 $2.07 $22 $24.07 $25.63 $(11.61)
Delaware PJM 1788 $3.54 $22 $25.54 $28.57 $(8.43)
Maryland PJM 1788 $1.69 $22 $23.69 $26.50 $(10.28)
New Jersey PJM 1788 $1.84 $22 $23.84 $26.67 $(10.13)
Ohio PJM 1788 $18.95 $22 $40.95 $45.81 $6.97
Pennsylvania PJM 1788 $2.52 $22 $24.52 $27.43 $(9.45)
Wash., DC PJM 1788 $2.54 $22 $24.54 $27.45 $(9.44)

Notes: This table lists inputs and results to different calculations of subsidies per megawatt-hour to
technologies in given states. The total subsidy is the total dollar per megawatt-hour subsidy. The
implied carbon valuation is the total subsidy divided by the marginal emissions displacement rate.
The subsidy for non-carbon benefits is the positive externality per megawatt-hour of production
from this technology which would rationalize this subsidy level. Each state is given along with its
corresponding region. See Section 9 for a description of subsidy calculations.
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energy capacity and energy efficiency on short-run outcomes. We are particularly interested

in estimating impacts on CO2 emissions across several regions in the United States. Within

each region, we find limited variation in these emissions impacts across technologies over

our study period (2010-2012). In contrast, we find statistically and economically significant

variation in emissions-related benefits across regions. For example, on a per MWh basis,

the quantity of emissions displaced by RE and EE resources in the Midwest is more than

double that in California. We also find that emissions-related benefits generated by RE

and EE resources can comprise a significant fraction of the short run marginal returns on

RE and EE investment. In regions where power sector emissions are not capped, emissions

displacement value can equal or exceed the value of avoided operating costs.

Although our analysis focuses on a key source of external benefits, it is not exhaus-

tive. External benefits of RE and EE investments can extend beyond short-run emissions

reductions. On the benefits side, support for RE policy is often rooted in the potential for

learning-by-doing and network effects. On the cost side, we do not attempt to estimate

potential integration costs imposed by increased RE or EE investment. Subtracting our esti-

mates of CO2 emissions benefits (valued at the social cost of carbon) from the corresponding,

production-based RE incentives provides a sense of how large these omitted external benefits

(net of any omitted external costs) would need to be to rationalize the policy incentives we

observe. These ‘residual benefits’ estimates are as high as $450/MWh (in the case of solar

PV) and vary significantly across regions and technologies.

These results should be interpreted with some caveats. First, this is a short-run analysis

that conditions on the power system structure, energy prices, the policy environment, and

the technology characteristics that prevailed during our study period. As fuel prices change,

new resources get added to the system, and the policy environment changes, our estimates

will no longer apply, although our methodological approach can be readily re-applied using

more current data. Our approach is not well suited to evaluating long run impacts, nor

should our estimates be used to value returns on very large, non-incremental increases in RE

and EE capacity.

These caveats notwithstanding, our findings have implications for policy implementation.

Production-based incentives will continue play an important role in accelerating and sup-

porting new RE and EE investments. Given the extent of regional differences in existing

generation portfolios, regional variation in marginal emissions rate profiles will persist for

some time. Designing policy incentives that reflect the value of – and the variation in –

emissions-related benefits will help to steer future investments towards regions and technolo-
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gies that can provide the greatest social returns.
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A Appendix

A.1 Data

Hourly electricity production and emissions

Almost all combustion-based electricity generating units in 22 states in the Eastern

United States are required to participate in a regional Nitrogen Oxide emissions trading

program. During “ozone season” (May-September), these units must continuously monitor

and report hourly CO2 mass emissions, heat inputs, and steam and electricity outputs to

the U.S. Environmental Protection Agency.45

We sum boiler-level data within regional markets in each hour of the analysis period to

estimate market-level production from thermal units and market-level CO2 emissions. Not

all generators in California, MISO, Texas, New York and New England are required to report

emissions. Specifically, small capacity plants and plants that are not covered by the NOX or

SO2 trading programs are exempt from reporting during this time period.

Marginal operating costs We collected real-time locational marginal prices for each

region46. In ISONE, we set λr equal to the Internal Hub real-time LMP in ISONE. For

all other regions, we set λr equal to the unweighted spatial average of each region’s hourly

LMPs. Note that ERCOT’s nodal market began on December 1, 2010; we drop all preceding

dates from our analysis of ERCOT.

Wind production data. We obtained simulated wind production data from the Na-

tional Renewable Energy Laboratory’s (NREL) Eastern Wind dataset47 and Western Wind

dataset48. These data span 3 years from 2004-2006. Data of this extent are not available in

45Under Part 75, Volume 40 of the Code of Federal Regulations.
46http://www.gdfsuezenergyresources.com/index.php?id=712 and http://oasis.caiso.com/, both

last accessed December 28 2014.
47http://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html, last accessed De-

cember 28, 2014.
48http://www.nrel.gov/electricity/transmission/western_wind.html, last accessed December 28,

2014.
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the years that we collected combustion generator data (2010-2012). Though correlation be-

tween wind speed and electricity load is very weak, using wind data from different years than

those used to construct MOERs could introduce small errors in our analysis. We used the

latitude and longitude of each simulated wind site to locate the production within each ISO,

and normalized these data to hourly energy production per megawatt of installed capacity

for each site.

Solar production data are from NRELs PV WATTS simulation tool 49. This software

applies PV performance modeling to typical meteorological year (TMY3) weather data to

estimate the hourly average production of a solar array installed at thousands of different

sites. We replicate this typical year for each year in our analysis. We used the default as-

sumptions: fixed open rack system facing south, tilt angle set equal to the sites latitude, total

system losses of 14%, ground coverage ratio of 0.3. As with the wind data, we normalized

the solar data to be energy production per megawatt of installed capacity. Because solar

production is highly spatially correlated on hourly time scales, we restricted our analysis to

only one location per ISO. We used NREL’s Solar Prospector to chose the TMY3 site with

the best solar resource within each region, as follows: China Lake, CA (California); Marfa,

TX (ERCOT); Boston, MA (ISONE), Rapid City, SD (MISO); New York, NY (NYISO);

Virginia Beach, VA (PJM).

Energy efficiency

We obtained a year of simulated hourly consumption data for typical residential and

commercial buildings in California (details on the data are can be found in (Wei et al.,

2012)). We focus on lighting efficiency as opposed to other forms of energy efficiency such as

heating and cooling loads in part because lighting is more consistent across different climate

regions. These consumption profiles vary by hour of day, weekdays/weekends and season.

Commercial lighting consumption is concentrated in business hours and residential lighting

energy is concentrated in evening hours.

We used these data to obtain a temporal profile for energy savings from increased lighting

efficiency. Specifically, we assumed that each MWh of energy saved from increased lighting

efficiency would be distributed in proportion to these hourly consumption data, and treat

those saved units of energy in a given hour as equivalent to energy produced from a wind or

solar generator. We assumed the hourly consumption profiles, conditioned on season, and

weekend / weekday, would be the same in each year of our analysis.

Levelized cost of wind energy (LCOE) are constructed from data provided by

49http://pvwatts.nrel.gov, last accessed December 28, 2014.
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Figure 8: Wind Power Purchase Prices: 1996-2013
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that the turbine scaling and other improvements to turbine efficiency described in Chapter 4 have 
more than overcome these headwinds to help drive PPA prices lower. 
 

Source: Berkeley Lab 
Figure 46. Generation-weighted average levelized wind PPA prices by PPA execution date and region 
 
Figure 46 also shows trends in the generation-weighted average levelized PPA price over time 
among four of the five regions broken out in Figure 30 (the Southeast region is omitted from 
Figure 46 owing to its small sample size). Figures 45 and 46 both demonstrate that, based on our 
data sample, PPA prices are generally low in the U.S. Interior, high in the West, and in the 
middle in the Great Lakes and Northeast regions. The large Interior region, where much of U.S. 
wind project development occurs, saw average levelized PPA prices of just $22/MWh in 2013. 
 

The relative competitiveness of wind power improved in 2013 
 
Figure 47 shows the range (minimum and maximum) of average annual wholesale electricity 
prices for a flat block of power64 going back to 2003 at 23 different pricing nodes located 
throughout the country (refer to the Appendix for the names and approximate locations of the 23 
pricing nodes represented by the blue-shaded area). The dark diamonds represent the generation-
weighted average levelized wind PPA prices in the years in which contracts were executed 
(consistent with the nationwide averages presented in Figure 46). 

                                                 
64 A flat block of power is defined as a constant amount of electricity generated and sold over a specified period. 
Although wind power projects do not provide a flat block of power, as a common point of comparison a flat block is 
not an unreasonable starting point. In other words, the time variability of wind energy is often such that its wholesale 
market value is somewhat lower than, but not too dissimilar from, that of a flat block of (non-firm) power (Fripp and 
Wiser 2006). 

Lawrence Berkeley National Laboratory (LBNL) Wiser et al. (2014). This report analyzes

power purchase agreements (PPAs) from a large sample of wind installations to produce

annual average levelized prices per megawatt-hour of wind. We used the latest data for each

of four regions: 2013 for Great Lakes, Interior, and West, and 2012 for the Northeast. Prices

and ISOs that we assigned to each region are in the Appendix.

In the 2013 Wind Technology Market Report, LBNL reports on a data set of 343 power

purchase agreements (PPAs) totalling nearly 30 GW of installed wind capacity. LBNL

collected these data from multiple sources, including FERCs Electronic Quarterly Reports,

FERC Form 1, avoided-cost data filed by utilities, pre-offering research conducted by bond

rating agencies, and a Berkeley Lab collection of PPAs. Figure 8 shows a summary of the full

data set. There is a clear downward trend in wind prices following the 2009 peak. Though

there are relatively few data in 2012-2013, their averages fall in line with the overall trends

in the data set.

These PPAs bundle together the sale of electricity, capacity and renewable energy cer-

tificates and the receipt of federal incentives (e.g. the production tax credit, investment tax

credit or treasury grant). ecause all projects should have received the federal production

tax credit (PTC) we set the total LCOE equal to the sum of PPA prices and the 2012 PTC

($22/MWh). Neglecting the influence of policies at the state and local level as well as local

market characteristics on PPAs, and assuming a competitive wind market, the PPA plus
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federal incentives will be representative of the levelized cost of wind power, and we treat

them as such in this paper.

Solar LCOE data are constructed from data from LBNL Barbose et al. (2014). We

used the 2013 installed cost for >5MW utility scale systems ($2.97 per watt).50 The LBNL

data are reported prior to receipt of any direct financial incentives or tax credits, therefore

assuming the PV industry is competitive, these prices are representative of total social costs

per MWh. We use the same cost model as in (Baker et al., 2013), namely: we assume that

the inverter is replaced every 10 years at a cost of $0.20/W but declining at 2% annually in

real terms; assume a project life of 30 years; assume a panel degradation rate of 0.5% per

year; and assume a real discount rate of 3%. We computed LCOE for each of the two sites

per region and averaged the result within each region; the resulting LCOE are in Table 1.

Energy efficiency LCOE data are from the US Department of Energy Appliance

and Equipment Standard Programs 2011 General Service Fluorescent Lamps rulemaking.

For each appliance efficiency rulemaking under consideration, the DOE releases a technical

support document including either a Life Cycle Cost Assessment or a National Impacts

Analysis which provide estimates of the energy savings and costs associated with different

efficiency levels (EL) under consideration. For both residential and commercial categories, we

focused on general service fluorescent lamps (GSFL). DOE estimates that there are more than

2 billion of these lamps in service in the US residential and commercial sectors (DOE, 2009),

with most (92%) in the commercial sector 51. DOE documents GSFL lamp characteristics

extensively for rulemaking purposes. The current DOE standard is 88 lumens per watt

for the lamp-ballast system (DOE, 2009). For each sector, we chose the baseline as the

technology with the lowest installed cost in that sector that also meets the standard. We

defined the efficiency option as the technology with the second lowest installed cost that

also meets the standard and is more efficient than the baseline. The resulting technology

choices were different for the residential and commercial sectors. We calculated a levelized

cost of energy saved by the efficiency option over a fifteen-year period (to reflect ballast

lifetimes Navigant Consulting (2009)) at a 3% discount rate. Further detail on efficiency

calculations, including the chosen technologies and their costs, in the appendix.

We used DOE estimates of technology costs and energy consumption to compute ef-

50We note that residential scale solar installed prices vary systematically across the country, and large-scale
systems likely do as well, however the data available comprise only a single nation-wide number. However,
local resource potential drives levelized cost, and this was factored into our analysis.

51Though this suggests the number in the residential sector is relatively small, at roughly 35 W per lamp,
the residential sector alone has over 6.5 GW of lamps installed. DOE estimates these lamps are used 791
hours per year, suggesting roughly 5 TWh of end-use electricity consumption per year
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Table 7: Data used to calculate efficiency LCOE.

residential commercial

baseline technology 0.75 ballast factor, 32 watt 0.78 ballast factor, 32 watt
efficiency option 0.75 ballast factor, 30 watt 0.75 ballast factor, 32 watt
baseline cost $52.96 $62.87
baseline energy 39.2 kWh 224.1 kWh
efficiency cost $53.55 $63.31
efficiency energy 37.3 kWh 215.4 kWh
LCOE $26.93 $4.39

Notes: (1) All lamps are electronic ballast. (2) We assumed a lamp and ballast replacement (due to failure
of existing lamp and ballast) for both residential and commercial. (3) All lamps are T8. (4) Levelized cost
computed by dividing cost difference between baseline and efficient option by the energy saved times an
annuity factor for 15 years at 3% discount rate (=12.3).

ficiency LCOEs. The key assumptions are in Table 7, taken from the DOE’s Technical

Support Document for the General Service Fluorescent and Incandescent Reflector Lamps

Energy Conservation Standard (Navigant Consulting, 2009).

The current DOE standard for general service fluorescent lamps is 88 lumens per watt

for the lamp-ballast system (DOE, 2009). We gathered data on technology costs and energy

consumption from the National Impacts Analysis for the current standard . In addition to

technical assessments of the lumens per watt and installed cost (including retail price to

consumer, taxes and installation labor) for each technology, DOE assumes residential lamps

will be operated 791 hours per year, and commercial lamps for 3,435 hours per year. For each

sector, we chose the baseline as the technology with the lowest installed cost in that sector

that also meets the current standard. We defined the efficiency option as the technology with

the lowest installed cost from among technologies that are more efficient than the baseline.

We calculated a levelized cost of energy saved by the efficiency option over a fifteen-year

period (per DOE’s estimates that ballast lifetime is 15 years (DOE, 2009)), at a 3% discount

rate.

Capacity value: We constructed capacity value in units of $/MW as CAPrj = CC×Pc

where CC is a “capacity credit,” (in MW per MW) and Pc is a payment for capacity ($/MW).

We obtained capacity prices from a variety of sources. Where possible we averaged pric-

ing data over 2010-2012 though circumstances did not permit in all cases. For California,

we used the median price for resources delivering between 2010 and 2012, as published in

the California Public Utility Commission’s 2011 annual resource adequacy report (Brooks

and Gannon, 2013). ERCOT does not have a capacity market so we set the price to zero

there. For ISONE, we averaged the results of the 2010-2011 and 2011-2012 Forward Capacity
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Auctions.52 For MISO, we noted that it’s state of the market report in 2012 argued that

very low capacity prices there are the result of market distortions that suppress prices (Po-

tomac Economics, 2013). Rather than use these prices we used the annualized cost of a new

combustion turbine, based on $650/kW installed cost (Black and Veatch, 2012), 3 percent

real discount rate, 30 year project life (yielding an annualization factor of 19.6 years) and 85

percent availability. For NYISO we used the Unforced Capacity spot auction prices averaged

over all months in 2010-2012. For PJM we used the RTO Base Residual Auction prices and

averaged across results from 2010/2011, 2011/2012 and 2012/2013 auction years. The data

are shown in Table 5.

Regional emissions intensities are computed as the ratio of regional CO2 emissions

to total regional generation. For all regions but California we used CEMS CO2 emissions;

California CO2 emissions were taken from EIA’s state electricity profiles (non-dispatchable

cogeneration plants comprise a substantial fraction of California emissions, but are not re-

ported in CEMS). Total regional generation for California was also taken from EIA. We

assumed negligible imports in ERCOT and used historical load data, available from ER-

COT’s website, as a proxy for total generation. We calculated generation in ISONE, MISO

and NYISO as historical load minus net imports (all data from each ISO’s website). For

PJM, we took generation data directly from its state of the market reports.

Renewable energy certificate data were retrieved from the website of the US De-

partment of Energy’s Office of Energy Efficiency and Renewable Energy53. Figure 9 shows

REC prices used for wind power (originally sourced from Spectron) and Figure 10 shows

solar-REC (SREC) prices (originally sourced from SECTrade). We digitized the datapoints

from 2010-2012 and took a simple average of the data.

Investment Tax Credit. Renewable energy developers in the United States can claim

either the production tax credit ($22/MWh) or an investment tax credit (equal to 30 percent

of the installed cost of the system). Typical wind plant capacity factors favor the production

tax credit. However most solar developers claim the investment tax credit and we assume so

here. To levelize this credit on a per-unit energy basis, we used the same parameters as those

used for the LCOE calculations described above (including the assumption that utility-scale

solar PV costs $2.97/W and selecting the best solar site from within each ISO) to levelize

30 percent of the system cost over 30 years of energy production.

52ISONE disaggregates its auctions into resources that deliver to Maine and those that deliver to the rest
of the pool; prices were identical for both.

53http://apps3.eere.energy.gov/greenpower/markets/certificates.shtml?page=5
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Figure 9: REC prices

Credit: US Department of Energy

A.2 k-means clustering

We cluster calendar days in our data using a k-means clustering algorithm. Within a given

region and season, every day of the period 2010-2012 is given a 24-dimensional value based

on the megawatt-hours per hour of fossil fuel generation in that hour. An additional value

is added for the megawatt-hours per hour at peak that day (which may occur at different

times). We then use a k-means clustering algorithm that matches days along these 25-

dimensions. Thus, we are matching days on both the shape of electricity demand and the

quantity in that day. We seed the clusters by initially matching entirely based on peak load

in that day.

We determine the number of clusters using the following algorithm. For each region

and season combination, we construct 12 clusters. We calculate the corresponding MOERs

and check for a significant difference (which we define as non-overlapping 95% confidence
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Figure 10: SREC prices

Credit: US Department of Energy

intervals) between any of the MOERs that result. If there are no significant differences

between any of the clusters, we drop to the next lowest number of clusters. Thus, we use

the smallest number of clusters which provides more informational content than the next

smallest number of clusters.

Figure 11 and Figure 12 summarize the results of this exercise. Each figure plots the

average generation profile for each season-region-cluster triad. Bars denote 95-percentile

confidence intervals. These graphs illustrate significant variation in load profiles even within

a region-season. The average number of clusters is 2.8.

A simpler approach to capturing this variation in load profiles would be to use the

calendar month to proxy for intra-seasonal variation in load profiles. Figure 13 illustrates

how our season-specific cluster composition varies in space and time over a single year, 2011.

In each region and season, green denotes the first cluster associated with low load levels.

Higher numbered clusters correspond with higher average load profile days. The figures
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show how our approach leads to a very different grouping of days as compared to a by-

month grouping. Our approach is designed to more directly control for the effects of load

profile differences across days within a region-season.

A.3 Marginal Operating Emissions Rates

Detailed hourly MOER results are in Fig. 14 and Tables 8 and 9.

A.4 Marginal Emissions Displacement Rates

A.4.1 Intra-regional variation in emissions displacement across wind sites

We are interested in assessing the potential significance of variation in wind energy produc-

tion profiles within a region. We start by estimating marginal emissions displacement rates

for the over 30,000 wind sites in the data. Figure 15 arranges these sites in ascending order

of estimated MEDR values. The figure suggests minimal variation in emissions displacement

across sites within a given region. This is not altogether surprising given the limited variation

in MOERs within most regions.

To put the variation summarized in the figure above into context, we systematically

compare the MEDR estimates in either tail of these regional distributions. More precisely, in

each region we select the ten sites straddling the 2.5 percentile value and ten sites straddling

the 97.5th percentile value. We bootstrap within region differences in MEDR across all

possible pairwise comparisons between low and high ranked sites.

Table 10 summarizes these differences. The average pairwise difference between sites with

high and low emissions displacement estimates, normalized by the average MEDR across all

sites in the region, varies from 1 to 4 percent. We also report a more extreme difference.

We take the two most different sites in each region, bootstrap the difference, and report the

95th percentile difference in MEDRs. The table shows that even this extreme measure of

the difference in emissions displacement rates across sites within a region is small relative to

the average MEDR (averaged across all sites in the region).

Based on these results, we conclude that intra-regional variation in emissions displace-

ment rates across wind sites can be neglected for further analyses. We instead use only a

subset of the sites (twenty wind sites from each region, ten from the 2.5th and ten from the

97.5th percentile of MEDRs) to summarize the variation in emissions displacement values

across regions and technologies.
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A.4.2 Variation in marginal emissions displacement rates

The paper reports the average deviation of simulated marginal emissions displacement rates

from regional and annual averages by technology. These interaction terms mask some re-

gional variation. The table below reports the coefficient estimates from a fully saturated

model (i.e. one including technology-region interactions).

A.5 Marginal Economic Value

The data used to generate Fig. 6 are in Table 11.

A.6 Marginal Abatement Cost

50% energy efficiency realization rate sensitivity analysis

We performed an additional sensitivity analysis to examine the possibility that energy

efficiency technologies do not achieve as great a level of energy savings in practice as their

engineering characteristics would suggest. To model this possible behavioral factor, we re-

run the marginal abatement cost analysis with a 50% realization rate for lighting efficiency.

The 50% rate is equally applied across all hours of the 2010-2012 period, i.e. the load shape

is unchanged. The figure below demonstrates how marginal abatement costs are different

if lighting efficiency technologies assuming that our lighting efficiency technologies achieve

50% less energy savings.
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Figure 13: Cluster composition over the time period

Notes: This figure displays the occurrence of different clusters over time for a representative year
(2011). Each region and season is represented as a series of colored blocks depending on the cluster
that the algorithm assigned to that day. Higher number clusters represent higher levels of electricity
generation. Winter and summer are displayed separately to emphasize that the clusters are defined
separately by region and season, i.e. cluster 3 represents two different levels of electricity generation
in two different seasons. See Appendix for a description of k-means clustering approach.
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Figure 14: Marginal operating emissions rates

Notes: This figure displays the average marginal operating emissions rates, in pounds of carbon
dioxide per megawatt-hour, in each hour of the day for different regions. Summer and winter are
displayed separately. See Section 4 for a description of marginal operation emissions approach.
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Table 8: Summer MOERs and bootstrapped 95 percent confidence intervals.

hour California ERCOT ISONE MISO NYISO PJM
1 878 1615 1204 2051 1371 1868

(858-899) (1528-1698) (1136-1276) (1978-2119) (1312-1432) (1786-1957)
2 880 1659 1210 2082 1432 1851

(860-900) (1566-1750) (1137-1288) (2008-2144) (1371-1499) (1769-1944)
3 883 1690 1226 2110 1455 1832

(863-904) (1594-1780) (1151-1305) (2037-2172) (1392-1525) (1736-1934)
4 881 1726 1249 2117 1469 1800

(859-903) (1628-1818) (1165-1330) (2047-2183) (1405-1537) (1706-1909)
5 868 1716 1241 2077 1468 1761

(849-888) (1621-1815) (1159-1321) (2016-2137) (1404-1537) (1671-1856)
6 856 1593 1250 2008 1402 1705

(838-877) (1500-1677) (1179-1321) (1952-2065) (1342-1464) (1632-1784)
7 851 1549 1280 1951 1353 1712

(831-872) (1467-1624) (1211-1354) (1890-2012) (1293-1413) (1647-1781)
8 847 1460 1294 1911 1300 1738

(823-870) (1359-1556) (1220-1372) (1840-1985) (1243-1354) (1671-1809)
9 855 1394 1317 1885 1277 1752

(829-880) (1296-1495) (1241-1398) (1796-1973) (1225-1329) (1681-1824)
10 878 1353 1337 1836 1263 1740

(851-903) (1263-1448) (1263-1413) (1739-1935) (1213-1315) (1672-1810)
11 908 1282 1347 1783 1264 1725

(878-935) (1208-1362) (1275-1423) (1685-1884) (1215-1316) (1661-1796)
12 944 1235 1355 1736 1265 1693

(916-972) (1171-1299) (1284-1427) (1640-1833) (1220-1315) (1632-1760)
13 962 1188 1352 1691 1279 1655

(934-990) (1127-1247) (1285-1419) (1601-1786) (1235-1324) (1594-1722)
14 971 1153 1346 1674 1281 1640

(944-999) (1095-1210) (1280-1414) (1587-1765) (1239-1323) (1583-1703)
15 980 1126 1342 1665 1280 1627

(952-1008) (1073-1178) (1275-1410) (1582-1754) (1240-1322) (1573-1686)
16 984 1122 1340 1663 1291 1622

(957-1011) (1072-1175) (1271-1405) (1581-1754) (1251-1331) (1570-1681)
17 982 1117 1340 1672 1288 1622

(956-1008) (1069-1168) (1272-1405) (1588-1763) (1245-1328) (1568-1679)
18 966 1123 1330 1699 1280 1643

(940-991) (1073-1172) (1258-1400) (1610-1792) (1235-1322) (1588-1703)
19 948 1146 1317 1744 1278 1673

(923-974) (1093-1202) (1243-1389) (1648-1839) (1230-1330) (1615-1737)
20 942 1185 1324 1783 1289 1699

(918-966) (1128-1249) (1251-1400) (1681-1879) (1234-1347) (1630-1769)
21 925 1241 1364 1823 1320 1766

(903-948) (1177-1307) (1289-1441) (1723-1919) (1264-1377) (1696-1839)
22 909 1351 1358 1887 1320 1852

(885-934) (1276-1427) (1280-1441) (1798-1975) (1263-1380) (1783-1927)
23 898 1398 1312 1962 1352 1906

(872-924) (1318-1476) (1232-1390) (1882-2040) (1294-1419) (1828-1992)
24 893 1506 1274 2026 1405 1924

(871-916) (1413-1596) (1200-1354) (1950-2099) (1344-1470) (1840-2013)

Notes: This table displays the average marginal operating emissions rates, in pounds of carbon
dioxide per megawatt-hour, in each hour of a summer day for different regions. Bootstrapped 95
percent confidence intervals in parentheses. See Section 4 for a description of marginal operation
emissions approach.
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Table 9: Winter MOERs and bootstrapped 95 percent confidence intervals.

hour California ERCOT ISONE MISO NYISO PJM
1 813 1565 1160 1984 1800 1824

(792-833) (1499-1633) (1058-1259) (1937-2032) (1682-1926) (1755-1897)
2 826 1597 1195 1981 1838 1820

(802-847) (1528-1668) (1090-1298) (1928-2029) (1723-1961) (1753-1893)
3 827 1595 1199 1994 1808 1817

(804-849) (1525-1665) (1101-1299) (1946-2040) (1694-1929) (1750-1891)
4 826 1591 1176 1991 1814 1820

(802-851) (1524-1661) (1075-1274) (1943-2036) (1703-1930) (1749-1893)
5 834 1565 1082 1960 1724 1842

(813-859) (1499-1635) (982-1178) (1904-2008) (1607-1838) (1767-1916)
6 838 1468 991 1868 1428 1818

(815-864) (1405-1537) (893-1087) (1810-1920) (1320-1540) (1751-1886)
7 864 1378 1057 1778 1212 1772

(841-889) (1320-1441) (968-1142) (1722-1833) (1106-1319) (1711-1836)
8 878 1335 1119 1736 1057 1757

(857-902) (1277-1400) (1029-1209) (1679-1793) (955-1167) (1694-1818)
9 871 1341 1206 1747 978 1787

(846-896) (1276-1411) (1115-1294) (1686-1812) (875-1088) (1716-1856)
10 883 1353 1268 1762 968 1802

(855-911) (1279-1430) (1183-1355) (1695-1832) (860-1071) (1726-1874)
11 907 1351 1273 1795 970 1818

(878-936) (1273-1432) (1186-1361) (1725-1867) (865-1076) (1743-1888)
12 907 1343 1293 1818 999 1826

(876-937) (1255-1429) (1201-1384) (1750-1895) (900-1097) (1752-1895)
13 925 1310 1277 1842 991 1838

(895-955) (1223-1395) (1178-1374) (1772-1915) (890-1089) (1766-1906)
14 924 1277 1244 1851 1001 1838

(891-955) (1193-1359) (1142-1346) (1781-1926) (906-1091) (1769-1903)
15 925 1255 1220 1873 1010 1834

(893-955) (1179-1332) (1117-1324) (1805-1944) (908-1108) (1768-1898)
16 924 1239 1243 1876 1009 1820

(890-955) (1170-1311) (1140-1350) (1809-1949) (904-1109) (1756-1883)
17 893 1237 1281 1836 1011 1801

(860-924) (1168-1313) (1193-1371) (1767-1913) (909-1116) (1730-1870)
18 947 1269 1283 1806 1078 1750

(918-977) (1198-1347) (1205-1366) (1739-1880) (985-1184) (1678-1818)
19 968 1277 1330 1785 1084 1760

(933-1005) (1213-1346) (1255-1411) (1715-1858) (987-1192) (1689-1831)
20 965 1242 1347 1809 1106 1791

(933-1001) (1171-1311) (1269-1432) (1736-1881) (989-1227) (1714-1867)
21 916 1274 1342 1867 1250 1818

(883-949) (1206-1342) (1258-1429) (1800-1934) (1126-1377) (1742-1892)
22 847 1357 1305 1932 1447 1831

(820-874) (1294-1430) (1221-1392) (1874-1992) (1308-1593) (1756-1906)
23 807 1456 1242 1999 1623 1839

(783-833) (1389-1532) (1154-1332) (1948-2054) (1474-1769) (1764-1917)
24 805 1523 1131 2012 1781 1840

(779-832) (1450-1599) (1032-1230) (1967-2062) (1635-1928) (1763-1918)

Notes: This table displays the average marginal operating emissions rates, in pounds of carbon
dioxide per megawatt-hour, in each hour of a winter day for different regions. Bootstrapped 95
percent confidence intervals in parentheses. See Section 4 for a description of marginal operation
emissions approach.
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Figure 15: Site-specific marginal emissions displacement

Notes: This figure displays the average marginal emissions displacement rates of individual sites
over the entire study period within each region. Sites are arranged from lowest marginal emissions
displacement on the left rate to highest on the right. See Section 5 for a description of marginal
operation emissions approach.
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Table 10: Summary of pairwise MEDR differences between wind sites with high and low
emissions displacement estimates

Region
Mean

difference
(lbs/MWh)

Extreme difference
(lbs/MWh)

Mean difference as
share of

regional average

Extreme difference
as share of

regional average
ISONE 14 60 1% 5%
ERCOT 32 145 2% 10%
MISO 14 123 1% 7%
NYISO 26 91 2% 7%
PJM 12 95 1% 5%
California 34 153 4% 17

Notes: This table displays differences between the mean MEDR of 20 representative high- and 20
representative low-MEDR sites. High sites are at the 97.5th percentiles distribution within each
region and low sites are at the 2.5th percentile. The mean difference represents the bootstrapped
mean of this difference. The extreme difference represents the 97.5th percentile difference between
the mean of these representative sites. Mean and extreme difference are also presented as a share
of the average regional average MEDRs. See Section 5 for a description of marginal operation
emissions approach.
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Table 11: Marginal social values used in Fig. 6

Region Technology
Avoided

operating costs
per MWh

Avoided
emissions value

per MWh

Capacity value
per MWh

California

Com Light $33.15 $18.23 $3.63
Solar $31.79 $17.20 $3.93
Res Light $33.61 $18.05 $4.02
Wind $31.14 $16.96 $3.13

ERCOT

Com Light $37.98 $26.64 -
Solar $42.36 $23.83 -
Res Light $32.89 $27.15 -
Wind $28.35 $26.60 -

ISONE

Com Light $49.95 $25.51 $6.93
Solar $49.87 $24.60 $8.04
Res Light $49.96 $25.74 $7.04
Wind $45.02 $23.72 $5.68

MISO

Com Light $36.55 $36.85 $5.29
Solar $37.40 $33.93 $6.04
Res Light $35.17 $37.66 $5.50
Wind $31.45 $35.67 $3.94

NYISO

Com Light $49.32 $24.47 $1.76
Solar $49.81 $21.46 $2.13
Res Light $49.08 $26.18 $1.79
Wind $44.75 $24.75 $1.40

PJM

Com Light $46.89 $35.60 $5.05
Solar $48.89 $33.18 $5.95
Res Light $45.69 $36.24 $5.28
Wind $41.39 $33.97 $4.17
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Figure 16: Marginal abatement costs at 50% energy efficiency realization rate

Notes: This figure plots the total marginal abatement cost, in dollars per ton of carbon dioxide,
from different region-technology combinations under the assumption that only 50% of the estimated
energy savings from lighting efficiency measures actually take place. See Section 7 for a description
of marginal abatement cost calculations.

57


	Introduction
	Conceptual framework
	Marginal operating emissions rate
	Marginal emissions displacement rate
	Marginal economic value
	Marginal abatement cost

	Data and empirical strategy
	Marginal generating units
	Regional unit of analysis
	Data Sources

	Marginal operating emissions rates
	Estimation results

	Average Emissions Displacement Rates 
	Estimation results
	Analysis of variance in emissions displacement rates

	Marginal Economic Value
	Avoided operating costs
	Capacity value
	The marginal value of RE and EE resources

	Marginal abatement cost
	Policy context
	Interpreting MEDRs in context of state- and federal subsidies
	Interpreting MEDRs in context of regional cap-and-trade programs

	Conclusion
	Appendix
	Data
	k-means clustering
	Marginal Operating Emissions Rates
	Marginal Emissions Displacement Rates
	Intra-regional variation in emissions displacement across wind sites
	Variation in marginal emissions displacement rates

	Marginal Economic Value
	Marginal Abatement Cost


