WE'RE HIRING! Ready to join our team and help make an impact?
BROWSE OPENINGS
shimmering gold

10 years of impact: on WattTime’s 10th birthday, a look back… and forward.

 February 21, 2024 

Here at WattTime we’re more accustomed to looking forward, rather than backward, with a focus on further impact we can help to catalyze. But today is a special date in our history. It’s our 10th birthday! February 21, 2024 marks a decade to the day since our official incorporation in 2014. And so in this article we’re going to be unusually introspective, taking a look back at some of the pivotal milestones and accomplishments of these past 10 years — and what we’re most excited about in the years ahead.

1. Behavioral economics academic research around choice.

 In the early 2010s, many of the first eventual WattTimers were grad students at UC Berkeley. We were behavioral economists, software programmers, data scientists. And we all shared a fundamental intellectual curiosity: What happens on the power grid when you flip on a light switch?

It seemed crazy that we, as everyday consumers, did not know. It was equally infuriating that we had no power over whether our electricity use caused more or less pollution. Yet we turned that sort of righteous indignation into opportunity via hackathons to try and figure out the answer.

2. Officially born in 2014 as a mission-centric nonprofit… with a software tech startup DNA.

As initial hackathons progressed and we rolled up our proverbial sleeves further, we soon discovered — to our surprise — that everyone else had this righteous indignation about it, too. They wanted the opportunity to voluntarily go green, if only given the choice to do so. A/B consumer testing strongly confirmed this hypothesis. (Subsequent consumer sentiment and behavior research, such as with our partners at the Great Lakes Protection Fund, have further affirmed our initial findings.) All of which prompted us to found WattTime as a mission-driven nonprofit, even though the solutions taking shape would have a high-tech software aspect to them.

3. Pioneering the idea of AER, powered by v1 MOERs.

Those first hackathons eventually evolved and matured into our first flagship solution: Automated Emissions Reduction (AER). AER provides a signal for smart devices to schedule their electricity use for times when they will cause less emissions and pollution.

We began with direct-to-consumer ideas such as smart plugs. The first adoption by an external user was four golf carts at UC Merced. Then things started to snowball with major tech companies and automakers, spanning technologies such as smart thermostats, battery energy storage systems, EVs (and their charging), and beyond.

v1 of our marginal operating emissions rate (MOER) powered this capability. We upgraded to v3 MOERs in 2021, also now available in a new-and-improved v3 API, including expanding geographic coverage for power grids around the world.

4. Championing the importance of marginal emissions.

When we started out with AER, as academics we knew that the best way to measure the impact of interventions (i.e., academic speak for things like load shifting) was to use marginal emissions, such as our MOER signal. This built upon the established, peer-reviewed literature that came before us.

More recently, though, we have found ourselves in important industry discussions (and sometimes, heated debates) about using average vs. marginal emissions rates. We didn’t set out with any expectation of getting involved in such debates; it has simply come with the job description.

The commercial tides are now turning in favor of the long-established academic findings. The likes of Microsoft, TimberRock, Brainbox AI, and others building WattTime and other marginal emissions signals into their energy and carbon intelligence platforms. Now there’s also, VERACI-T, a cross-industry collaborative group validating marginal emissions datasets.

5. 2017–2018: WattTime’s “Oscars party” collective moment.

For any idea or solution, there’s a time when it starts to gain real traction and recognition in the market. For us, these years were that moment — both for WattTime as an organization and for individual members of our team.

Our co-founder and executive director Gavin McCormick was named a climate “fixer” in the 2017 edition of the Grist 50, an annual list of emerging green leaders and bold problem solvers. One year later in 2018, he was named a finalist to the Pritzker Emerging Environmental Genius Award at the UCLA Institute of the Environment & Sustainability, which focuses on “uncovering promising young innovators and boosting their careers as champions for the environment.”

That same year, ‘emissionality’ was recognized as a finalist in the 2018 Shorty Impact Awards and AER was recognized as a finalist in the Emerging Technology of the Year category of S&P Global Platts’ annual Global Energy Awards. 2018 became an even bigger year when AER was named a winner of the 2018 Keeling Curve Prize, an initiative that recognizes and rewards the most promising projects that effectively reduce greenhouse gas emissions or increase carbon uptake.

6. An emissions signal for battery energy storage.

A different level of credibility came into play when government agencies and programs began incorporating some of our emissions signal work.

In California, for example, battery energy storage systems under the Public Utility Commission’s Self-Generation Incentive Program (SGIP) were supposed to help the state’s grid reduce its carbon emissions. That wasn’t happening — until SGIP began using WattTime to develop their program signal, ensuring battery energy storage programs achieved their actual emissions-reduction goals.

Now other states and jurisdictions are exploring similar approaches, using more direct measurement of the target metric (e.g., marginal emissions), rather than proxy signals and assumptions (e.g., price or roundtrip BESS efficiency).

7. A shift toward Impact Accounting.

Carbon accounting standards — especially the GHG Protocol’s prevalent Scope 2 guidance around the indirect emissions associated with electricity use — have motivated sweeping clean energy investments from corporations and institutions worldwide.

But best practices evolve with the times. Which is why we’ve teamed up with companies such as REsurety and written joint position papers with organizations such as Electricity Maps. It’s why we cheer on our corporate partners at the Emissions First Partnership and why we’ve written our own insight brief on the idea of Impact Accounting.

These and other efforts all aim to help better align corporate actions with true real-world impact and authentic emissions reductions, and to combat a rise in greenwashing concerns and skepticism around hollow actions that don’t achieve their proclaimed benefits.

8. Expanding from climate to health damages. 

Although we started our work years ago focused primarily on carbon emissions, we also recognize the importance of mercury and other forms of power plant air pollution — including their impacts on human health and environmental justice. So after much hard work, we unveiled a new health damages signal, which ties electricity use (and its associated grid emissions) to human harm.

9. Surpassing 1 billion watts of emissionality. 

Toward the end of the previous decade, we popularized emissionality as a next evolution of and complement to additionality.

As a strategy for clean energy procurement, the idea behind emissionality is simple: Not all renewable energy is created equal. The avoided emissions of a new wind or solar farm can vary, by a lot, depending on where that project gets built and what power plants its generation displaces. The size of the prize is literally gigatons of avoided emissions opportunity on the table.

Boston University was one of the first organizations to adopt the strategy. Others soon followed: steelmaker Nucor, tech giant Salesforce, solar developer Clearloop, advisory Edison Energy, and others have also leaned into an emissionality strategy for their clean energy procurement.

Toward that end, last year we were thrilled to surpass 1 GW of renewables procured via this strategy. Less than 6 months later, we’re already closing in on the next gigawatts of wind and solar procured in part with emissionality in mind.

10. Co-founding Climate TRACE and incorporating satellite-based emissions monitoring.

In 2019 we announced a new project to measure emissions of the world’s power plants from space, launched with grant support from Google.org’s AI Impact Challenge and covered by the likes of Vox. By 2020, that initial effort had expanded in a big way into Climate TRACE, a global coalition of NGOs, tech companies, universities, and climate leaders including Al Gore using satellites and AI to measure human-caused GHG emissions from essentially all of the major sources on the planet.

Across the three years since then, Climate TRACE’s data have progressed by leaps and bounds, rapidly advancing from country-level annual data to facility-level data for 350+ million assets in the world’s most-comprehensive and granular such dataset, which we unveiled in December 2023 on the mainstage at COP28.

Along the way, Climate TRACE has been named to Fast Company’s “most innovative” list and TIME’s “100 best inventions.” We received the Sierra Club’s Earthcare Award and our executive director Gavin McCormick gave a TED talk on Climate TRACE that’s been viewed nearly 1.8 million times.

But it’s the use of the data for faster, deeper decarbonization that makes us most proud. From national, regional, and local governments to major companies such as Tesla, GM, Polestar, and Boeing. 

What’s next: scaling further impact together

Whew! It’s been a busy (and positively impactful) 10 years. But after today’s celebration of our official 10th birthday, that’ll be enough reminiscing in the rearview mirror. We’re far more excited and motivated about the work ahead of us, and the even greater impact we can achieve together. Won’t you join us?

READ MORE NEWS + INSIGHTS